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Editorial of Special Issue on Biometry

This Special Issue on Biometry arose from the III Portuguese-Galician
Meeting of Biometry (EBio2018), jointly organized by the Portuguese Statis-
tical Society (SPE) - Biometry Section - and by the Galician Society for the
Advancement of Statistics and Operations Research (SGAPEIO), and hosted by
the University of Aveiro (Portugal), which took place from 28 to 30 June 2018.

EBio2018 was preceded by I Portuguese-Galician Meeting of Biometry, I
Portuguese-Galician Meeting on Ecological and Environmental Statistics and II
Galician-Portuguese Meeting of Biometry with applications to the Health Sci-
ences, Ecology and Environmental Sciences, held in Braga (2013), Vila Real
(2014) and Santiago de Compostela (2016), respectively. These meetings aim,
namely, to expand the field of action of both societies to new circles of the biom-
etry community, and to promote the exchange and to intensify the relationships
within each community and between the statistical communities.

According to the International Biometric Society, “The term Biomet-
rics/Biometry has been used since early in the 20th century to refer to the
field of development of statistical and mathematical methods applicable to data
analysis problems in the biological sciences. Statistical methods for the analy-
sis of data from agricultural field experiments to compare the yields of different
varieties of wheat, for the analysis of data from human clinical trials evaluating
the relative effectiveness of competing therapies for disease, or for the analysis of
data from environmental studies on the effects of air or water pollution on the
appearance of human disease in a region or country are all examples of problems
that would fall under the umbrella of Biometrics/Biometry as the term has
been historically used”.

Based on the increasing importance of the areas mentioned in the above
definition, we decided to challenge EBio2018 participants to submit their con-
tributed papers to REVSTAT - Statistical Journal - for a Special Issue on Biom-
etry. We intended to promote the dissemination of the latest advances in the
development and application of statistical and mathematical methods in Biol-
ogy, Medicine, Ecology, Psychology, Pharmacology, Agriculture, Environment
and other Health and Life Sciences.

After a peer-review process, six manuscripts were accepted for publication
in this issue covering the following topics: i) Model risks of extreme events in pop-
ulation dynamics, ii) Peaks over threshold methods to estimate extreme quantiles
and probabilities related to hypertension pathology, iii) Assessing extreme value
conditions motivated by two real environmental problems, iv) Parameters esti-
mation of HIV dynamic models, v) Accuracy measures for binary classification
in the selection of the optimal cut-point, vi) Joint modelling of longitudinal and
competing risks clinical data.
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Finally, we (guest editors) would like to thank all authors for their con-
tributions and all the anonymous reviewers who helped to prepare this special
issue. Furthermore, we are grateful to the past and current Editors-in-Chief of
REVSTAT - Statistical Journal - for agreeing to publish this special issue, as
well as to all members of the scientific and organizing committees who worked
to make EBio2018 a very interesting event on the field of Statistical Models in
Biometry.
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DEIO, Universidade de Vigo
roca@uvigo.es



INDEX 
 

 

Modeling risk of extreme events in generalized Verhulst models 
 

M. Fátima Brilhante, M. Ivette Gomes and Dinis Pestana …………………… 145 
 

Modeling large values of systolic blood pressure in the portuguese  
population 
 

Constantino P. Caetano and Patrícia de Zea Bermudez ……………………… 163 

 

Testing conditions and estimating parameters in extreme value  
theory: application to environmental data 
 

Helena Penalva, Dora Prata Gomes, M. Manuela Neves and  ………………187 
Sandra Nunes 

 

On the parameters estimation of HIV dynamic models 

Diana Rocha, Sónia Gouveia, Carla Pinto, Manuel Scotto, ………………… 209 

João Nuno Tavares, Emília Valadas and Luís Filipe Caldeira 
 

Accuracy measures for binary classification based on a quantitative  
variable 
 

Rui Santos, Miguel Felgueiras, João Paulo Martins and  …………………  223 
Liliana Ferreira 
 

Joint modelling of longitudinal and competing risks data in clinical  
research 

 
Laetitia Teixeira, Inês Sousa, Anabela Rodrigues and ..……………………. 245 
Denisa Mendonça 





REVSTAT – Statistical Journal

Volume 17, Number 2, April 2019, 145-162

MODELING RISK OF EXTREME EVENTS
IN GENERALIZED VERHULST MODELS

Authors: M. Fátima Brilhante
– Faculdade de Ciências e Tecnologia, Universidade dos Açores,
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Abstract:

• A very popular model in population dynamics, which has been around since the
first half of the nineteenth century, is the Verhulst logistic model. However, some
limitations of this model have provided grounds to propose more sophisticated growth
models using, for instance, the former as a basis. Since the Verhulst model and
some generalizations of it are closely connected to extreme value distributions, either
max-geometric-stable or max-stable, we show that the parameter attached to the
retroaction factor of these generalized models establishes, on its own, which extreme
value distribution is adequate to model risks of extreme events in population dynamics.

Key-Words:

• Extreme value distributions; generalized Verhulst models; growth and retroaction pa-
rameters; max-geometric-stable distributions; population dynamics.

AMS Subject Classification:

• 60G70, 92D25.



146 M. Fátima Brilhante, M. Ivette Gomes and Dinis Pestana



Modeling Risk of Extreme Events in Generalized Verhulst Models 147

1. INTRODUCTION

“It is generally agreed that the specific growth rate [...] declines as
density increases, and hence that the form of the population curve
with time in a limited system has a sigmoid shape. Of the many pro-
posed models only one, the logistic of Verhulst (1838) [...] is widely
used. It is presented in most current ecology texts and is incorporated
into almost all fish and game management theories. Such tacit accep-
tance probably derives from its mathematical simplicity and biological
clarity.”

Smith (1963)

Let N(t) be the size of a population and R(t) the amount of available
resources at time t. It is reasonable to relate R(t) and N(t) by the differential
equation

(1.1)
d

dt
R(t) = −η d

dt
N(t) ,

with η representing the amount of resources consumed to yield a new population
unit. The solution of (1.1) is

R(t) = η
(
K −N(t)

)
= R(0)− ηN(t) ,

and hence K = R(0)/η > 0 is the carrying capacity, i.e. the limiting size the
population may reach without disruptive effects on the availability of resources.

On the other hand, it also makes sense to consider that the population
growth rate is proportional to the amount of available resources, namely

d
dtN(t)

N(t)
= µR(t) .

Therefore,

(1.2)
d

dt
N(t) = ρN(t)

(
1− N(t)

K

)
,

where ρ = µR(0) > 0 is the malthusian intrinsic growth rate, or growth rate per
capita. In the right side of equation (1.2), N(t) is considered to be the growth
factor and 1−N(t)/K the retroaction factor, which is responsible for curbing
down population growth to sustainable levels. The solution of (1.2), known as
the Verhulst model (Verhulst [16]), is

(1.3) N(t) =
KN(0)

N(0) + (K −N(0)) e−ρt
,

which belongs to the logistic family of functions, hence the name logistic model
(N(0) is the initial population size).
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On some occasions, it is more convenient to express the Verhulst logistic
equation (1.2) as a function of the population density δ(t) = N(t)/K, namely

(1.4)
d

dt
δ(t) = ρ δ(t)

(
1− δ(t)

)
.

The solution of (1.4) is

δ(t) =
1

1 + exp(−ρt)
,

which is a member of the logistic family of distributions. As pointed out in
Smith [13], over time the population curve will have a sigmoid shape, which is
typical of continuous distribution functions.

In spite of its popularity, the Verhulst model has some limitations. For
instance, one limitation is only being suitable for modeling sustainable growth, or
modeling stable populations, in the sense that the population sizes are maintained
at sustainable levels. Therefore, over the years the Verhulst model has been used
as a building block for other more sophisticated models, some of which allowing
the possibility of modeling different types of unrestricted population growth.

Many of newer models state that either d
dtN(t) or d

dt lnN(t) is a decreasing
function of the population density (as does the Verhulst model). As an example,
we have the family of models based on the Box-Cox family of transformations
(Box and Cox [3])

(1.5)
d

dt
lnN(t) = ρ

1−
(
N(t)
K

)ν
ν

⇔

 d
dtN(t) = ρN(t)

1−
(
N(t)
K

)ν
ν , ν > 0

d
dtN(t) = ρN(t)

(
− ln

(
N(t)
K

))
, ν = 0

,

which contains the Verhulst model as a special case (ν = 1). The subfamily in
(1.5) for ν > 0 was considered in Richards [12], and the solution for ν = 0 is

N(t) = K exp

(
ln

(
N(0)

K

)
exp (−ρt)

)
,

which is commonly known in population dynamics as the Gompertz growth
model. This model is proportional to the Gumbel distribution, a well known
extreme value (EV) distribution for maxima, and has been used, for instance, to
model the growth of cancer tumors. Note that the Gumbel distribution has the
functional form

(1.6) Λ(x;λ, δ) = exp(− exp(−(x− λ)/δ)), x ∈ R, (λ, δ) ∈ R× R+ ,

where λ and δ are, respectively, location and scale parameters.

A natural extension of Verhulst’s equation (1.2) is the Blumberg hiperlogis-
tic equation (Blumberg [2])

(1.7)
d

dt
N(t) = ρ

(
N(t)

)α(
1− N(t)

K

)β
, α, β > 0 .
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However, Blumberg’s equation does not contain a closed form analytical solution,
except for some values of the parameters α and β. For example, if α+ β = 2 (and
K = 1), the solution of (1.7) belongs to the class of max-geometric-stable distri-
butions, where the shape parameter is a function of the retroaction parameter β
in (1.7).

On the other hand, Brilhante et al. [4] extended the subfamily in (1.5) for
ν = 0 by considering

(1.8)
d

dt
N(t) = ρN(t)

(
− ln

(
N(t)

K

))1+ξ

, ξ ∈ R .

Those authors showed that the solution of (1.8), when K = 1, belongs to the
general EV (GEV) family of distributions for maxima, with the functional form

(1.9) Gξ(x;λ, δ) = exp
(
−
(
1 + ξ(x− λ)/δ

)−1/ξ)
, 1 + ξ(x− λ)/δ > 0,

where ξ ∈ R, λ ∈ R and δ ∈ R+ are, respectively, shape, location and scale pa-
rameters. Observe that equation (1.8) can also be considered a generalization
of Verhulst’s logistic equation, since 1−N(t)/K is a linear approximation of
− ln (N(t)/K), due to the fact that N(t)/K → 1, as t→∞. The effect of re-
placing 1−N(t)/K by − ln (N(t)/K) in (1.2) is that we shall have a weaker
control over population growth than before. This weaker control effect can easily
be explained by noticing that if x ∈ (0, 1), 1− x is proportional to the density
function of the minimum U1:2 = min(U1, U2) and − lnx is the density function
of the product U1U2, where U1 and U2 are two independent standard uniform
random variables, and thus the stochastic ordering U1U2 � U1:2 holds true.

An even more general differential equation for population dynamics, based
on the BetaBoop family of densities, was considered in Brilhante et al. [5], namely

(1.10)
d

dt
N(t) = ρ

(
N(t)

)α[− ln(1−N(t))
]β(

1−N(t)
)γ(− lnN(t)

)δ
,

where α, β, γ, δ > 0. The previous equation includes equations (1.7) and (1.8)
as special cases, but goes even further by allowing simultaneously two different

growth factors depicted in
(
N(t)

)α
and

[
− ln(1−N(t))

]β
, as well as two differ-

ent environmental retroaction factors indicated by
(
1−N(t)

)γ
and

(
− lnN(t)

)δ
.

Observe now that the growth factor N(t) can be considered as a linear approxi-
mation of the growth factor − ln(1−N(t)), but with the latter stimulating more
growth than the former. However, equation (1.10) does not contain a closed form
analytical solution, unless for some special combinations of the parameters α, β,
γ and δ. For more information on other population growth models, cf. Lotka [10],
Tsoularis [14] and Tsoularis and Wallace [15].
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The EV distributions that arise as solutions to the Verhulst and some gener-
alized Verhulst equations seem to indicate that there is a close connection between
population dynamics and forms of extreme stability. This was our motivation to
investigate what kind of relationship is indeed present. Therefore, in Section 2,
we shall show that the parameter attached to the retroaction factor of some
generalized Verhulst equations determines, on its own, and in most situations,
which EV distribution for maxima is suitable to model risks of extreme events in
population dynamics. Finally, in Section 3, some overall comments are further
provided.

2. EXTREME STABILITY IN SOME GENERALIZED
VERHULST MODELS

2.1. Some basic facts in extreme value theory

In extreme value theory (EVT) the logistic distribution, which arises as
the solution of Verhulst’s normalized logistic equation (1.4), is known to be one
of three types of max-geometric-stable distributions, the other two being the
log-logistic and backward log-logistic distributions (Rachev and Resnick [11]).

Definition 2.1. A distribution function H is a max-geometric-stable
distribution if for all θ ∈ (0, 1), there exist real numbers aθ=a(θ) > 0 and bθ=b(θ)
such that

H(aθx+ bθ) =
θH(x)

1− (1− θ)H(x)
.

Basically, if {Xn}n∈N is a sequence of independent and identically dis-
tributed random variables and XN :N = max(X1, . . . , XN ) is the random max-
imum, where N is a geometric random variable of mean 1/θ, independent of
each Xn, then, as θ → 0, max-geometric-stable distributions are the only pos-
sible non-degenerate limiting distributions for sequences of linearly normalized
random maxima (XN :N − bθ)/aθ.

Another well known fact in EVT is that GEV distributions for maxima,
defined in (1.9), are the unique max-stable distributions.

Definition 2.2. A distribution function G is a max-stable distribution
if for all n ∈ N, there exist real numbers αn = α(n) > 0 and βn = β(n) such that

Gn(αnx+ βn) = G(x) .

In other words, and as n→∞, max-stable distributions are the only pos-
sible non-degenerate limiting distributions for sequences of linearly normalized
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maxima (Xn:n − bn)/an, with Xn:n = max(X1, . . . , Xn), for {Xn}n∈N a sequence
of independent and identically distributed random variables (Gnedenko [7]), or
more generally, for stationary weakly dependent random variables with distri-
bution function F (Leadbetter et al. [9]). If the aforementioned non-degenerate
limit exists, we then say that F is in the domain of attraction for maxima of Gξ,
in (1.9).

Initially, in Gnedenko’s seminal paper, there appeared three types of max-
stable distributions, which can indeed be combined into a single family, the GEV
family of distributions for maxima in (1.9). In particular, if ξ > 0, we have the
so-called Fréchet distribution, if ξ < 0, we obtain the Weibull distribution for
maxima and if ξ = 0, we get the Gumbel distribution, already defined in (1.6),
by taking the limit of (1.9) as ξ → 0. The shape parameter ξ in (1.9) is the
extreme value index (EVI), a very important parameter associated with extreme
events.

Remark 2.1. From the relation between the minimum and the maxi-
mum, namely min(X1, . . . , Xn) = −max(−X1, . . . ,−Xn), we get the GEV dis-
tribution for minima, defined by G∗ξ(x;λ, δ) = 1−Gξ(−x;λ, δ), with Gξ(x;λ, δ)
given in (1.9).

In Section 1 we mentioned that, when K = 1, the GEV distribution for
maxima appears as the solution of equation (1.8), which can be regarded as a
generalized Verhulst equation. This makes some sense because there is a strong
connection between max-geometric-stable and max-stable distributions. More
precisely, if Gξ represents the distribution function of a GEV distribution for
maxima, with EVI ξ, and H = Hξ represents the distribution function of a max-
geometric-stable distribution, we have

Hξ(x;λ, δ) =
1

1−lnGξ(x;λ, δ)
=

1

1 +
(
1 + ξ(x−λ)/δ

)−1/ξ , 1+ξ(x−λ)/δ > 0,

with (ξ, λ, δ) ∈ R× R× R+. Therefore, we have a close relationship between the
log-logistic and Fréchet distributions (ξ > 0), between the backward log-logistic
and Weibull for maxima distributions (ξ < 0) and between the logistic and Gum-
bel distributions (ξ = 0).

In the next subsection we shall be particularly interested in investigating
which EV distribution is adequate to model risks of extreme events in population
dynamics, when using some generalized Verhulst models. To this end, we recall
one of the first order condition for establishing domains of attraction for maxima
(or simply max-domains of attraction). In particular, we shall work with the
first order condition given in de Haan [6], which is equivalent to the first order
condition given in Gnedenko [7].
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We say that a distribution function F belongs to the max-domain of at-
traction of a GEV distribution Gξ, and we use the notation F ∈ DM(Gξ), if, and
only if,

(2.1) lim
t→∞

U(tx)− U(t)

a(t)
=

{
xξ−1
ξ , ξ 6= 0

lnx , ξ = 0
, x > 0 ,

where U(t) = F←
(
1− 1

t

)
, t ≥ 1, is the reciprocal tail quantile function, F←(y) =

inf{x : F (x) ≥ y} is the generalized inverse function of F and a(.) is an adequate
positive function.

If ξ 6= 0, sometimes it is more convenient to consider the following condi-
tions instead, which are equivalent to (2.1):

a) If ξ > 0, we can choose a(t) = U(t), in (2.1), and then F ∈ DM(Gξ>0) if,

and only if, lim
t→∞

U(tx)
U(t) = xξ for x > 0;

b) If ξ < 0, U(∞) <∞ and lim
t→∞

U(∞)−U(t)
a(t) = −1/ξ: Then F ∈ DM(Gξ<0) if,

and only if, lim
t→∞

U(∞)−U(tx)
U(∞)−U(t) = xξ, for x > 0.

Remark 2.2. In spite of the close connection between max-geometric-
stable and max-stable distributions, the former class does have their own set of
characterizations for domains of attraction. However, Hξ ∈ DM(Gξ). Indeed,
and with the notation F = 1− F for the right tail function, Hξ = − lnGξ/(1 −
lnGξ) ∼ Gξ/(1− lnGξ).

2.2. EV distributions in generalized Verhulst models

Let us consider again the Blumberg hiperlogistic equation

(2.2)
d

dt
N(t) = ρ

(
N(t)

)α
(1−N(t))β , α, β > 0 .

Henceforth, we shall assume that K = 1 in all differential equations in order to
get a normalized solution, i.e. a distribution function N .

If α 6∈ N, the solution of (2.2) satisfies the equation

(2.3)
(N(t))1−α

1− α 2F1

(
1− α, β; 2− α;N(t)

)
= ρt+ C ,

where 2F1(a, b; c; z) =
∑∞

n=0
(a)n(b)n

(c)n
zn

n! , with (x)n = x(x+ 1) · · · (x+ n− 1), is the
hypergeometric function and C is a real number. Without loss of generality, we
can assume that C = 0.
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Since 2F1(a, b; b; z) = (1− z)−a, it follows that if α+ β = 2 (β = 2− α), we
get the closed form analytical solution

N(t) =
1

1 +
(
(1− α)ρt

)−1/(1−α) =
1

1 +
(

1 + (1− α)
(
ρt− 1

1−α

))−1/(1−α)
for (2.2), which belongs to the max-geometric-stable family of distributions, with
an EVI ξ = 1− α = β − 1. Consequently, N ∈ DM(Gξ=1−α=β−1) (see Remark
2.2).

Remark 2.3. Observe that the Verhulst logistic equation (1.2), which
is just the Blumberg hiperlogistic equation in (2.2) for α = β = 1, satisfies the
condition α+ β = 2, assumed in Theorem 2.1, with ξ = 1− α = β − 1 = 0.

We shall next generalize the result above on the basis of the reciprocal
tail quantile function associated with the solution that comes out of (2.3) when
α 6∈ N, which is given by

U(t) = N←
(
1− 1

t

)
=

1

ρ

(
1

1− α
(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
− C

)
.

Hence, if β < 1, we have U(∞) <∞ and if β ≥ 1, U(∞) =∞. These results fol-
low from the properties of the hypergeometric function, namely 2F1(a, b; c; 1) <∞
if a+ b− c < 0 and 2F1(a, b; c; 1) =∞ if a+ b− c ≥ 0.

We first state:

Theorem 2.1. If α 6∈ N in the Blumberg hiperlogistic equation (2.2),
then N ∈ DM(Gξ=β−1).

Proof: a) For β < 1,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
=

= lim
t→∞

2F1(1− α, β; 2− α; 1)−
(
1− 1

tx

)1−α
2F1

(
1− α, β; 2− α; 1− 1

tx

)
2F1(1− α, β; 2− α; 1)−

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
= xβ−1 lim

t→∞

(
1− 1

tx

1− 1
t

)−α
= xβ−1 .

Therefore, N ∈ DM(Gξ=β−1<0). To obtain the limit above we took into
consideration the fact that

∂

∂t

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
= (1− α)

(
1− 1

t

)−α
tβ−2 .
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b) If β > 1,

lim
t→∞

U(tx)

U(t)
= lim

t→∞

1
1−α

(
1− 1

tx

)1−α
2F1

(
1− α, β; 2− α; 1− 1

tx

)
− C

1
1−α

(
1− 1

t

)1−α
2F1

(
1− α, β; 2− α; 1− 1

t

)
− C

= xβ−1 lim
t→∞

(
1− 1

tx

1− 1
t

)−α
= xβ−1 .

Consequently, N ∈ DM(Gξ=β−1>0).

c) If β = 1,

lim
t→∞

(
U(tx)− U(t)

)
=

1

(1− α)ρ

[(
1− 1

tx

)1−α
2F1

(
1− α, 1; 2− α, 1− 1

tx

)
−

−
(
1− 1

t

)1−α
2F1

(
1− α, 1; 2− α, 1− 1

t

)]
=

lnx

ρ
.

Thus, if we consider a(t) = 1/ρ > 0, we have

lim
t→∞

U(tx)− U(t)

a(t)
= lnx ,

which means that N ∈ DM(Gξ=β−1=0).

Note 2.1. The previous limit was obtained with the help of the soft-
ware Mathematica, since there are series expansions involved and the use
of relations between contiguous hypergeometric functions.

We next state:

Theorem 2.2. If α, β ∈ N in the Blumberg hiperlogistic equation (2.2),
then we also get N ∈ DM(Gξ=β−1).

Proof: a) If α = n = 2, 3, . . . and β = 1, the solution of (2.2) satisfies
now the equation

n∑
k=2

1

1− k
1

(N(t))k−1
+ ln

(
N(t)

1−N(t)

)
= ρt+ C.

Hence, the reciprocal tail quantile function associated with the solution is,
in this case,

U(t) =
1

ρ

(
n∑
k=2

1

1− k
1(

1− 1
t

)k−1 + ln(t− 1)− C

)
,
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with U(∞) =∞. It is quite straightforward to prove that

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

from which follows that N ∈ DM(Gξ=β−1=0).

b) When α = 1 and β = m = 2, 3, . . . , we have a solution satisfying the equa-
tion

m∑
k=2

1

k − 1

1

(1−N(t))k−1
+ ln

(
N(t)

1−N(t)

)
= ρt+ C ,

which in turn yields the reciprocal tail quantile function

U(t) =
1

ρ

(
m∑
k=2

1

k − 1
tk−1 + ln(t− 1)− C

)
,

with U(∞) =∞. It is also quite straightforward to prove that

lim
t→∞

U(tx)

U(t)
= xm−1 ,

which means that N ∈ DM(Gξ=β−1>0).

c) For the more general case α = n = 2, 3, . . . and β = m = 2, 3 . . . , we get a
solution that verifies the equation

n∑
k=2

ak
1− k

1

(N(t))k−1
+

m∑
j=2

bj
j − 1

1

(1−N(t))j−1
+A ln

(
N(t)

1−N(t)

)
= ρt+C ,

where the ak and bj ’s are real numbers and A > 0. The reciprocal tail
quantile function is now defined by

U(t) =
1

ρ

 n∑
k=2

ak
1− k

1(
1− 1

t

)k−1 +

m∑
j=2

bj
j − 1

tj−1 +A ln(t− 1)− C

 ,

with U(∞) =∞. It easily follows that

lim
t→∞

U(tx)

U(t)
= xm−1 ,

which means, once again, that N ∈ DM(Gξ=β−1>0).

Remark 2.4. All previous results lead us to conjecture that for all
α, β > 0, the solution of equation (2.2) will be in the max-domain of attrac-
tion of a GEV distribution with an EVI ξ = β − 1, where β is the retroaction
parameter. However, the case α = 2, 3, . . . and β 6∈ N is still left to be proved.
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Unfortunately, we cannot use equation (2.3) because the hypergeometric function
diverges for the parameters involved. So far we were not able to obtain a general
equation as the ones obtained for different scenarios of α, β ∈ N. Nevertheless,
the results above, and all particular cases we have tried, indicate that we should
have a solution N ∈ DM(Gξ=β−1). This seems very likely, since it holds true for
β ∈ N and there is no apparent reason why it should not also hold for β 6∈ N.

For example, if α = 2 and β = 1/2, the solution of (2.2) satisfies the equa-
tion

−
√

1−N(t)

N(t)
− arctanh

(√
1−N(t)

)
= ρt+ C ,

which yields the reciprocal tail quantile function

U(t) = −1

ρ


√

1
t

1− 1
t

+ arctanh

(√
1
t

)
+ C

 ,

with U(∞) <∞. Given that

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
= x−1/2 = x1/2−1 ,

we have N ∈ DM(Gξ=−1/2). On the other hand, if, for instance, α = 3 and
β = 3/2, the solution of (2.2) satisfies now the equation

−2− 5N(t) + 15(N(t))2

4(N(t))2
√

1−N(t)
− 15

4
arctanh

(√
1−N(t)

)
= ρt+ C ,

from which the reciprocal tail quantile function is

U(t) =
1

ρ

−2− 5
(
1− 1

t

)
+ 15

(
1− 1

t

)2
4
(
1− 1

t

)2√1
t

− 15

4
arctanh

(√
1
t

)
− C

 ,

with U(∞) =∞. Since

lim
t→∞

U(tx)

U(t)
= x1/2 = x3/2−1 ,

we conclude that N ∈ DM(Gξ=1/2).

Remark 2.5. In Blumberg’s hiperlogistic equation (2.2) we are not con-
sidering the possibility of an absent growth or retroaction factor, i.e. α = 0 or
β = 0. For example, if we assume that α = 0 in (2.2), it is interesting to see that
the solution is (for C = 0)

N(t) = 1−
(
(β − 1)ρt

)−1/(β−1)
= 1−

(
1 + (β − 1)

(
ρt− 1

β − 1

))−1/(β−1)
,
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which is a member of the generalized Pareto (GP) family of distributions with
shape parameter β − 1.

The GP family of distributions has the functional form

(2.4) Fξ(x;λ, δ) = 1−
(
1 + ξ(x− λ)/δ

)−1/ξ
, 1 + ξ(x− λ)/δ > 0 , x > λ ,

with (ξ, λ, δ) ∈ R× R× R+. Once more, ξ, λ and δ are shape, location and scale
parameters, respectively. The GP family defined in (2.4) combines into a single
family three families of distributions, namely the exponential family, which is the
limiting case of (2.4) as ξ → 0, the classical Pareto family (ξ > 0) and the so-
called Pareto type II family (ξ < 0). Note that the uniform distribution, which is
the solution of equation (2.2) for α = β = 0, is a GP distribution when ξ = −1.

In EVT, GP distributions also play an important role, more precisely,
in modeling peaks over high thresholds. In fact, if X is a random variable
with distribution function F , GP distributions arise as the limiting distribu-
tion for the distribution of conditional excesses X − u|X > u, as u→ xF , where
xF = sup{x : F (x) < 1} is the right endpoint of the underlying model F .

In a population dynamics context what matters to know is that
Fξ ∈ DM(Gξ). Therefore, when dealing with the case α = 0 in equation (2.2), we
have a solution N ∈ DM(Gξ=β−1). Note also that if β = 0 in (2.2), the solution
is now

N(t) =
(
(α− 1)(−ρt)

)−1/(α−1)
,

which is of the type 1− Fξ(−x, λ, δ), with Fξ defined in (2.4), and remind-
ing us of the relation between GEV distributions for minima and for maxima,
namely G∗ξ(x;λ, δ) = 1−Gξ(−x;λ, δ). In particular, if α = 1, we get as solution
N(t) = exp(ρt), i.e. an exponential growth.

Let us next consider the differential equation

(2.5)
d

dt
N(t) = ρ

(
N(t)

)α
(− lnN(t))β , α, β > 0 ,

which generalizes equation (1.8) considered in Brilhante et al. [4]. We have now
the validity of the following:

Theorem 2.3. If N is the solution of the differential equation (2.5),
then N ∈ DM(Gξ=β−1).

Proof: If α = 1 (and β > 0), we get the closed form analytical solution
(for C = 0),

N(t) = exp
(
−
(
(β−1)ρt

)−1/(β−1))
= exp

(
−
(

1 + (β−1)
(
ρt− 1

β−1

))−1/(β−1))
,

which is a GEV distribution for maxima with an EVI ξ=β−1, i.e. N ∈DM(Gξ=β−1).
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On the other hand, if α 6= 1 and:

a) β < 1, the solution satisfies the equation

(2.6) (1− α)β−1Γ
(
1− β, (α− 1) lnN(t)

)
= ρt+ C ,

where Γ(a, z) =
∫∞
z ta−1e−tdt, a > 0, is the incomplete gamma function, or

equivalently, the solution satisfies the equation

(2.7) −(1− α)β−1γ(1− β, (α− 1) lnN(t)) = ρt+ C ,

where γ(a, z) =
∫ z
0 t

a−1e−tdt = Γ(a)− Γ(a, z) is another type of incomplete
gamma function and Γ(a) =

∫∞
0 ta−1e−tdt, α > 0, is the (complete) gamma

function.

The reciprocal tail quantile function associated with (2.6) is

U(t) =
1

ρ

(
(1− α)β−1Γ

(
1− β, (α− 1) ln

(
1− 1

t

))
− C

)
,

with U(∞) <∞. In this case,

lim
t→∞

U(∞)− U(tx)

U(∞)− U(t)
=

1

x
lim
t→∞

(
ln(1− 1

tx)

ln(1− 1
t )

)−β (
t− 1

x

t− 1

)−α
= xβ−1 ,

since

∂

∂t
Γ
(

1− β, (α− 1) ln
(
1− 1

t

))
= −

(α− 1)1−β
(
1− 1

t

)−α (
ln
(
1− 1

t

))−β
t2

.

Therefore, we have N ∈ DM(Gξ=β−1<0).

b) β > 1, the solution satisfies now the equation

(− lnN(t))1−β

β − 1
1F1

(
1− β, 2− β; (1− α) lnN(t)

)
= ρt+ C ,

where 1F1(a, b; z) =
∑∞

n=0
(a)n
(b)n

zn

n! is the confluent hypergeometric function.

In this case we are using equation (2.7) because if a < 0,
γ(a, z) = za

a 1F1(a, a+ 1;−z).
The reciprocal tail quantile function is

U(t) =
1

ρ

((
− ln

(
1− 1

t

))1−β
β − 1

1F1

(
1− β, 2− β; (1− α) ln(1− 1

t )
)
− C

)
,

with U(∞) =∞, since we have 1F1(a, b; 0) = 1. Therefore, without loss of
generality, if C = 0,

lim
t→∞

U(tx)

U(t)
= lim

t→∞

(
ln
(
1− 1

t

)
ln
(
1− 1

tx

))β−1 1F1

(
1− β, 2− β; (1− α) ln(1− 1

tx)
)

1F1

(
1− β, 2− β; (1− α) ln(1− 1

t )
)

= xβ−1 .

Hence, N ∈ DM(Gξ=β−1>0).
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c) β = 1, the solution satisfies the equation

−Ei
(
(1− α) lnN(t)

)
= ρt+ C ,

where Ei(x) = −
∫∞
−x

e−t

t dt, x > 0, is the exponential integral function. Thus,
the reciprocal tail quantile function is

U(t) = −1

ρ

(
Ei
(
(1− α) lnN(t)

)
+ C

)
,

with U(∞) =∞. Since the exponential integral function series expansion
is

Ei(x) = γ + lnx+
∞∑
n=1

xn

n!n
,

where γ = 0.57721 . . . is Euler’s constant (cf. Abramowitz and Stegun [1]),
it follows that

lim
t→∞

(
U(tx)− U(t)

)
=

1

ρ
lim
t→∞

ln

(
ln(1− 1

t )

ln(1− 1
tx)

)
=

lnx

ρ
.

Therefore,

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

meaning that N ∈ DM(Gξ=β−1=0).

As proved above, the retroaction parameter β of the generalized Verhulst
equation (2.5) is the only parameter that establishes which GEV distribution for
maxima is adequate to model the risk of extreme events in population dynamics,
with the EVI being equal to β − 1. We saw earlier that, for a large variety of
situations, this also happens to be the case when using equation (2.2). Now, this
might seem at first sight a bit strange, in the sense that the growth parameter α
has no involvement whatsoever in establishing the limit distribution. However,
this apparent “abnormality” can be explained by noticing that we are working
with normalized equations, and therefore getting normalized solutions, meaning
that N(t) ∈ (0, 1). In light of this, we have (1−N(t))β → 0 as β →∞, which
in this context is translated into a weaker control on population growth, and
therefore the possibility of occurrence of more extreme events. This situation will
also be mirrored in the case of working with the retroaction factor (− lnN(t))β.

Remark 2.6. It is also interesting to see that the solution of the sub-
family of models defined in (1.5) for ν > 0, i.e.

(2.8)
d

dt
N(t) = ρN(t)

1− (N(t))ν

ν
,
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and which contains the Verhulst logistic equation as a special case (ν = 1), belongs
to the max-domain of attraction of a GEV distribution, with EVI ξ = 0. In fact,
we already know that the solution for ν = 1 is a member of the logistic family
of distributions, and which in turn belongs to the max-domain of attraction of
a GEV distribution with EVI ξ = 0. But, more generally, the solution of (2.8)
satisfies the equation

ν lnN(t)− ln
(
1− (N(t))ν

)
= ρt+ C ,

and therefore the reciprocal tail quantile function associated is

U(t) =
1

ρ

[
ν ln

(
1− 1

t

)
− ln

(
1−

(
1− 1

t

)ν)
− C

]
,

with U(∞) =∞. Since

lim
t→∞

U(tx)− U(t)

1/ρ
= lnx ,

it follows that N ∈ DM(Gξ=0).

3. COMMENTS AND FURTHER RESULTS

As mentioned in Section 1, N(t) is a linear approximation of − ln(1−N(t)),
with N(t) ∈ (0, 1). So a valid question is, what happens if N(t) is replaced by
− ln(1−N(t)) in (2.2)? In other words, what kind of solution do we get for the
generalized Verhulst equation

(3.1)
d

dt
N(t) = ρ

[
− ln(1−N(t))

]α
(1−N(t))β , α, β > 0 ?

What happens is that the roles between β and α are switched, in the sense that
now the growth parameter α establishes, on its own, which EV distribution for
minima, not for maxima, is at stake.

In fact, if β = 1, the solution of (3.1) is a GEV distribution for minima
G∗ξ , with ξ = α− 1. As an immediate consequence of the close connection be-
tween maxima and minima, there are only three types of stable distributions for
minima, namely the Fréchet for minima (ξ > 0), the Weibull (ξ < 0) and the
Gumbel for minima (ξ = 0). On the other hand, if β 6= 1, the solution of (3.1)
will belong to the min-domain of attraction of a G∗ξ , with ξ = α− 1. Note that
in this new setting we can still have uncontrolled population growth, although
this growth will be somehow restricted to minimum levels, due to “lack of space”
to accommodate more explosive population growths.

An interesting and open topic of research lies now on the estimation of β
on the basis of the estimation of ξ, or the other way round, the estimation of
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ξ on the basis of the estimation of β. (For the estimation of ξ, see the recent
overview on statistical EVT by Gomes and Guillou [8], among others.) In fact,
an adequate estimation of the parameter β is fundamental so that the generalized
Verhulst models considered here can be applicable to real data. This is the case,
since we have established that the retroaction parameter β is the only parameter
that determines which GEV distribution for maxima is appropriate to model the
risk of extreme large events in population dynamics, with the EVI (for maxima)
being equal to β − 1. A similar comment applies to the growth parameter α and
the modeling of extreme small events in population dynamics, with the EVI for
minima being then equal to α− 1. Tsoularis and Wallace [15] investigated how
the inflection point of the population growth curve is related to its malthusian
growth and retroaction parameters, and their results may be exploited in this
context.
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1. INTRODUCTION

Extreme events can be defined as low frequency episodes of some random
process. For example, floods transpire when the water level of some water body
exceeds an uncommonly high threshold. Classical statistical methodologies are
not suited to treat this kind of data, since they aim to make predictions about fu-
ture behavior of the phenomena under study based on the most common events,
i.e., classical statistics uses the central data to infer on future behavior by fitting
the data to models based on asymptotic central limit like results. Such approach
might be considered too overly simplified to infer on rare events. Hence the ex-
treme value analysis paradigm arose out of the necessity to address the situations
that fall on this scope. It offers well suited statistical methodologies to describe
the tail behavior of the distribution underlying the observed data.

Extreme value theory (EVT) has been applied to a large assortment of
different areas, ranging from meteorology, hydrology and environment to insur-
ance, among others. There are still not many contributions of EVT to medical
data (see e.g. [13]) even though EVT has recently been applied to Public Health
problems ([30]) and to disease early detection (see [18] and [8]). The Peaks Over
Threshold (POT) approach is a widely used EVT methodology. It aims to fit a
generalized Pareto distribution (GPD) to the excesses (or exceedances) above a
sufficiently high threshold, see [26] and [3].

One of the most strenuous point using POT is the selection of the threshold,
i.e., the value over which the asymptotic model is fitted. In this work, we apply
several classic techniques, such as the mean excess function and also some recent
methods, see [24], [2] and [10].

Models obtained by using EVT techniques are able to extrapolate beyond
the observed data and also enable extreme quantile estimation. In fact, most
commonly we aim to estimate exceedance probabilities, P (X > z) = p, for some
random variable X and a very small probability p and also determine the value
xq (q = 1/m) such that xq is exceeded, in mean, once every m observations.

In this work, the large values of the systolic blood pressure (SBP) will be
modeled by means of the Peaks Over Threshold. Several GPD models will be
fitted to a group of individuals who suffer from a specific type of hypertension,
termed isolated systolic hypertension (ISH). Extreme quantiles and exceedance
probabilities will be estimated. We also analyze the consequences to the models
that result from the discretization of the continuous SBP variable.

The details of the problem to be studied are presented in section 2. Section
3 contains the results of the exploratory data analysis. The core issue of this paper
is presented in section 4 and deals with the modeling of the extreme SBP observed
in elderly individuals. In this section the issues related with the quantization of
the data are also addressed. The paper ends with some comments and conclusions
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which constitute section 5.

2. DESCRIPTION OF THE PROBLEM

Hypertension, also known as high blood pressure, is described as an ab-
normal pressure on the blood vessels caused by blood flow. As blood is pumped
throughout the body, the blood vessels are impacted by this flow, thus creating
blood pressure and blood vessel tension. The higher the tension, the stronger
the effort the heart must exert in order to pump the blood. Diagnosing hyper-
tension is performed by measuring two blood pressure markers. Systolic blood
pressure is the tension measured by the compliance of the blood vessels to the
blood flow during a heartbeat. Diastolic blood pressure (DBP) is the tension
measured between heartbeats.

According to the World Health Organization, hypertension is a global pub-
lic health issue. It is highly associated with incidents of heart disease, stroke,
kidney failure, premature mortality and disability. It is also a risk factor associ-
ated with the leading death causes in Portugal. Hypertension has been linked to
unhealthy diets, sedentary lifestyle, drug abuse and tobacco use, see [20].

With the goal of addressing this public health issue, the Portuguese Na-
tional Association of Pharmacies (ANF) developed a campaign in 2005 through
their Department of Pharmaceutical Care to study the risk factors associated
with the leading death causes in the country. As a consequence, information re-
garding n = 40065 individuals that volunteered to join the study was registered.
The variables recorded are presented in Table 1.

Variable Categories/Units Variable Categories/Units
Gender male/female Age years
District (see Figure 4) Smoking habits yes/no
Body mass index kg/m2 Fasting blood
(BMI) glucose level (FBG) mg/dL

Systolic blood mmHg Blood glucose level
pressure at random time (BGRT) mg/dL

Triglyceride level mg/dL Diastolic blood pressure mmHg
Physician visit yes/no Total cholesterol level mg/dL

Table 1: Recorded variables and corresponding units of measurement or
categories.

In a previous study the extreme levels of total cholesterol were modelled by
Zea de Bermudez and Mendes [13]. In this article we apply the aforementioned
Peaks Over Threshold methodology to the elderly individuals who suffer from
isolated systolic hypertension, which are characterized by having diastolic blood
pressure < 90 mmHg and systolic blood pressure ≥ 140 mmHg. This
group is of interest since there is a known relationship between the age of the
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individuals and the prevalence of ISH [4]. Moreover, it makes up the bulk of the
hypertensive individuals contained in the database. The classification categories
in terms of blood pressure conditions are presented in Table 2 (guidelines of the
Portuguese Hypertension Society). The goal is to fit a GPD to the SBP excesses
above a sufficiently high threshold u, and subsequently estimate tail probabilities
and extreme quantiles.

Category SBP DBP
Optimal < 120 and < 80
Normal 120-129 and/or 80-84
Normal high 130-139 and/or 85-89
First Degree Hypertension 140-159 and/or 90-99
Second Degree Hypertension 160-179 and/or 100-109
Third Degree Hypertension ≥ 180 and/or ≥ 110
Isolated Systolic Hypertension ≥ 140 and < 90

Table 2: Categories of blood pressure in mmHg∗ (Portuguese Hyperten-
sion Society guidelines).

2.1. The generalized Pareto distribution

The generalized Pareto distribution constitutes a fitting model for threshold
exceedances, see [3] and [26]. Let Y1, Y2, ..., Yn, be a sequence of i.i.d. random
variables. The cumulative distribution function of the excesses X = Y −u, given
that Y > u for a sufficiently high threshold u, is approximately given by:

(2.1) F (x) =

1−
(

1 + kx
σ

)− 1
k

k ∈ R \ {0},

1− e−
x
σ k = 0,

with shape parameter k, −∞ < k <∞ and scale parameter σ, σ > 0.

This distribution has support
{
x ∈ R : x > 0

}
for k ≥ 0 and support{

x ∈ R : 0 < x < −σ
k

}
for k < 0. In practice the most suited threshold is

the smallest value that still provides an adequate model fit to the data. The
generalized Pareto distribution will be denoted by GPD(k,σ).

∗ Hypertension is categorized by the highest value of either SBP or DBP, the isolated
systolic hypertension category should be classified by first, second and third degree according
to the values of SBP in each category.
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3. EXPLORATORY DATA ANALYSIS

In terms of blood pressure, the n = 40065 individuals are classified in one
of the following groups:

• Group 1 − Individuals with both blood markers higher than the standard
values (DBP > 90 and SBP > 140)

• Group 2 − Individuals suffering from isolated systolic hypertension (DBP
< 90 and SBP ≥140)

• Group 3 − Healthy individuals (DBP < 90 and SBP < 140)

• Group 4 − Individuals suffering from diastolic hypertension (DBP > 90
and SBP < 140)

There are also 3380 individuals with omitted information about these variables.
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Figure 1: Systolic blood pressure vs. diastolic blood pressure for Por-
tuguese voluntary pharmacy attendees.

Figure 1 results from plotting the SBP versus the DBP for the Portuguese
voluntary pharmacy attendees, where the aforementioned stratification can clearly
be seen. It suggests some linear correlation with positive slope between the two
blood markers. The red horizontal and vertical lines convey the accepted lim-
its over which an individual is considered from suffering an hypertension-type
pathology, as illustrated by Table 2. It would also be interesting to study the ex-
treme values of both variables, DBP and SBP. Although, a considerable amount
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of literature exists about bivariate extreme value analysis, see [21], it is not the fo-
cus of this study. From this point onward we will concentrate on the exploratory
analysis of the SBP in individuals who suffer from ISH (n = 9996) - note that
this data has lower bound equal to 140 mmHg.
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Systolic pressure boxplot by gender
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Systolic pressure boxplot by smoking habits
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Figure 2: Systolic blood pressure boxplots by gender (left) and by tobacco
consumption (right).

Figure 2 illustrates the SBP boxplots by gender and tobacco consumption.
It can be seen that women seem to have more and higher extreme values of
SBP than men. The boxplots produced for the smoking habits seems to indicate
that those who smoke have, in the overall, lower values of SBP than those who
do not. However, no credible conclusion about this relation can be derived from
these boxplots since there are several confounding factors. For instance, out of the
9586 individuals with recorded smoking habits, only 6.3% are smokers. Moreover,
this boxplot includes men and women, young and old individuals, which might
also influence this outcome.

Age Min 1st Qu. Median Mean 3rd Qu. Max n Prop
< 25 140.0 140.8 145.0 149.2 150.5 206.0 56 0.0059
25-34 140.0 141.0 146.0 149.2 152.0 212.0 171 0.0180
35-44 140.0 142.0 147.0 149.2 152.0 207.0 315 0.0331
45-54 140.0 142.0 148.0 149.7 154.0 203.0 803 0.0844
55-64 140.0 143.0 149.0 152.0 158.0 213.0 2075 0.2180
65-74 140.0 144.0 150.0 154.1 160.0 240.0 3613 0.3796
≥ 75 140.0 145.0 154.0 157.2 165.0 235.0 2486 0.2611
NA’s 477

Table 3: Summary statistics of the systolic blood pressure by age in Por-
tuguese voluntary pharmacy attendees who suffer from isolated
systolic hypertension.

One factor that has been shown to be highly associated with high values
of SBP is age, see [27] and [4]. Table 3 presents a summary of the SBP variable
in an array of different age strata. The individuals are not equally distributed
by age stratum. It can be seen that the bulk of the observations lie above the 55
years old group. This might be the result of selecting individuals who suffer from
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Systolic pressure boxplot by BMI strata
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Figure 3: Systolic blood pressure boxplots by age strata (left) and by BMI
strata (right).

ISH. As previously mentioned, this pathology is known to be more common in
the elderly. We can see a steady rise of SBP values as age goes up. This can also
be observed in Figure 3 (left) where it is most apparent that older individuals
tend to have, in the overall, higher values of SBP. As mentioned before, SBP is
the tension the blood flow produces on the blood vessels during a heartbeat. As
a person gets older, he/she tends to lose blood vessel elasticity thus increasing
the tension generated by the blood flow.

Underweight Normal Weight Overweight Obese

< 18.5 18.5-24.9 25-29.9 > 30.0

Table 4: BMI classes.

Table 4 illustrates the different classes of body mass index. Figure 3 (right)
presents the boxplots of the SBP values for each BMI category. The percentage
of individuals which fall in each of the BMI strata is not even - 0.27%, 19.18%,
47.18% and 33.37% for underweight, normal, overweight and obese categories,
respectively. Maybe the prevalence of ISH is higher in individuals with high
BMI. The low number of observations in the underweight category might also be
due to the fact that underweight people tend to have lower values of SBP, hence
underweight individuals exceeding 140 mmHg are rare. Not taking into account
the underweight stratum, there is little to no difference in the SBP between each
class. This suggests that BMI by itself may not be sufficient to account for high
levels of systolic blood pressure.

Our next interest is to compare the Portuguese districts and autonomous
regions in terms of SBP. Figure 4 illustrates the boxplots of the values of the
SBP observed in individuals who suffer from ISH by district and autonomous
regions. One curious phenomena is that higher population density districts yield
higher maximum values, i.e., the largest value is observed in Porto, which is the
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District/ n District/ n
Autonomous Region Autonomous Region
Viseu 320 Vila Real 299
Viana do Castelo 120 Setúbal 788
Santarém 550 Porto 1590
Portalegre 92 Lisboa 2248
Leiria 467 Açores 88
Ilha da Madeira 221 Guarda 103

Faro 227 Évora 186
Coimbra 441 Castelo Branco 200
Bragança 276 Braga 810
Beja 117 Aveiro 736
NA 117

Table 5: Number of voluntary attendees per district/autonomous
region, suffering from ISH.
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Figure 4: Systolic blood pressure by Portuguese district/autonomous re-
gion.

second most populated Portuguese district, followed by Lisboa, the most popu-
lated district with a maximum equal to 235 mmHg. Some other high population
density districts with extreme maximum values are: Braga with maximum 229
mmHg, the third most populated Portuguese district and Viseu with maximum
230 mmHg. The previous mentioned districts also were the ones that supplied
the largest samples, as seen in Table 5, (with the exception of Viseu) which might
also be the cause for such high maximum values when compared with other dis-
tricts with smaller sample size. Regarding the median values of systolic blood
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pressure, the autonomous regions of Açores and Madeira, which are the only
non-continental Portuguese regions, provided lower median systolic blood pres-
sure values than any individual district from mainland. The remaining districts
are similar, with the exceptions of Portalegre that has a slightly higher median
than the rest. In [29] the authors study the relationship between diet, leisure
activity, BMI and serum cholesterol. Such analysis would also be well suited
for the Portuguese districts and autonomous regions, since an individual’s diet
and lifestyle varies geographically. The modeling of extreme values of SBP of
individuals that suffer of ISH by district and autonomous regions can be seen in
[5].

4. MODELING EXTREME SYSTOLIC BLOOD PRESSURE
VALUES IN THE ELDERLY

In this section we propose models for the extremes of systolic blood pressure
of elderly individuals (age ≥ 55) who suffer from ISH. Out of the 9996 individuals
suffering from ISH a total of 9519 have documented age. There are several reasons
that justify our interest in this study. First, the exploratory data analysis shows
that SBP values somewhat change between age strata (as seen in Figure 3 (left)),
suggesting that as a person ages, his or her systolic blood pressure tends to rise.
This phenomena is also well known in the literature, see [27]. Second, the elderly
make up the bulk of the observations. Additionally 86% of the SBP readings
were recorded in people aged 55 and older.

We begin by addressing the quantized structure of the data. The methods
to model extreme values were constructed for continuous variables, hence some
methods might not perform well when applied to a highly discretized data set. We
quote [2] regarding the performance of the goodness-of-fit tests using a quantized
data set: ‘Quantization pushes the null distribution of the Anderson-Darling
statistic to the right; the p-value obtained by positioning the observed statistic
with the quantized data to the null distribution from continuous data is smaller
than it should be’. Thus we may be led to reject a certain model that in fact was
fit for the data.

By performing an exploratory analysis of individuals in this study (indi-
viduals aged 55 and older, suffering from ISH) we encountered two issues with
the data, specifically the quantized structure of the data and the high frequencies
of rounded numbers. Figure 5 illustrates this issue. The systolic blood pressure
values of 140, 150, 160, 170, 180, 190 and 200 mmHg have higher frequencies than
their ‘neighbors’. The reason for this behavior is unknown, though one might as-
sume that it was the result of biased approximations or perhaps the devices used
to measured the blood pressure were not precise enough. The most common way
to deal with this problem is to shake the sample distribution, by that we mean
considering each value censured in an interval. For some observed value xobs, its
true value x belongs to an interval [xobs−δ, xobs+δ], δ ∈ R+. We can choose how



Modeling Large Values of Systolic Blood Pressure in the Portuguese Population 173

x is distributed in this interval. For example x can be equally distributed in the
interval, or it may have a higher probability to be close to the observed value,
xobs. The former can be constructed by generating a set of random values from
a continuous Uniform distribution with parameters a = −δ and b = δ, δ ∈ R+,
and adding them to each observed value, while the latter can be obtained by
generating values from a beta distribution with parameters α = β = δ, δ > 0,
location parameter 0.5 and scale parameter 1, hence taking values in [−0.5, 0.5].
This second alternative will result in a milder shakeup of the data when com-
pared to the first, since it is more likely that the generated values will be close
to 0. We would like to notice that this technique is used in several studies, see
[2], and it is usually applied in order to obtain a smoother empirical distribution.
It is important to underline that technically the data is being altered and hence
usually a mild jitter is considered.
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Figure 5: Kernel density function of the systolic blood pressure values of
elderly individuals who suffer from ISH.

4.1. Jitter and non-jitter extreme value models for systolic blood
pressure in elderly individuals who suffer from isolated systolic
hypertension

We aim to produce produce three extreme value models for the SBP mea-
sured in individuals that satisfied the aforementioned criteria, using three distinct
data sets.

1. Unaltered Data

2. Data + Uniform(−1.5, 1.5)
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3. Data + Beta(10, 10,−0.5, 0.5)

We want to ascertain if there are differences in the models created from the three
data sets mentioned above. Also, we would like to assess how these models hold
up regarding their predicting capabilities.

Using the R function rbeta we generated a random sample with size 8174
from a beta distribution with parameters α = 10, β = 10, location parameter
0.5 and scale parameter 1. We also generated a sample of size 8174 from the
continuous uniform distribution with parameters a = −1.5 and b = 1.5 using the
R function runif .

We then created two new data sets by adding each sample to the data.
Note that by adding these simulated samples to the SBP values of the elderly
individuals who suffer from ISH we got some values below 140, that were not
considered in the subsequent analysis. Let’s investigate how both jitters altered
the data.

Figures 6 and 7 illustrate the histograms and kernel densities, respectively,
of the non-jitter data and jitter data. Note that, as expected, both jitters seem
to smooth out the sample distribution, as seen on Figure 7. The histograms
show that there are less frequency differences between neighboring classes. It
is important to point out that although there appears to be a slight difference
between the jitter data and the non-jitter data, the summary statistics of these
data sets seem not to differ much, as seen in Table 6.

Data Min 1st Qu. Median Mean 3rd Qu. Max n
Non-jitter 140.0 145.1 151.9 155.6 162.0 240.00 8174
Unif-jitter 140.0 145.6 151.7 155.7 162.0 238.50 7593
Beta-jitter 140.0 145.2 151.9 155.8 162.0 239.98 7628

Table 6: Summary statistics of the systolic blood pressure by age in the
uniform jitter-data, beta-jitter data and non-jitter data.

Next we propose a sequence of possible threshold candidates: 140, 150,
160, 170, 180, 190 and 200 mmHg. Figures 8, 9 and 10 present the exponential
QQ-plots and histograms for the data above each candidate threshold for the
non-jitter, uniform-jitter and beta-jitter data, respectively. For values above 170
mmHg the exponential model seems to adequately fit the 3 cases. Furthermore,
the associated histograms display a tail decay indicating that an exponential
model could give an adequate fit.
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Figure 6: Histograms for the non-jitter data (top left) and jitter data using
the uniform (top right) and beta (bottom) distributions.

4.1.1. Threshold selection analysis

We now start the procedure of selecting adequate thresholds for each case,
with the goal of fitting GPD(k,σ) models for the excesses above each threshold.
We start by plotting the empirical mean residual life function (MEF), see [10].
This function should have a linear behavior for some high value of systolic blood
pressure, see [10]. Using the R package eva and its function mrlPlot we plotted
the empirical MEF for each data set. Figure 11 illustrates the results. Although
the plots are not very easy to analyze, they seem to indicate that for values be-
tween 180 mmHg and 200 mmHg, the function appears to have a linear behavior,
implying that an appropriate threshold could lie between these two values.

Next we present the results for the Bayesian threshold selection method
using measures of surprise for each data set, see [24]. Figure 12 presents the
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Figure 7: Estimated kernel densities for the non-jitter (top left) and jitter
data using the uniform (top right) and beta (bottom) distribu-
tions.

predictive p-values obtained by considering the previous sequence of threshold
candidates, for the non-jitter data, uniform-jitter data and beta-jitter data, re-
spectively. The test statistic used is the likelihood, one of the possibilities rec-
ommended by [24]. For each threshold we sampled 5000 times the predictive
posterior distribution. Then, we proceeded to compute the p-values. This pro-
cess was repeated 30 times and presented in Figure 12 by a boxplot at each
threshold. The p-value obtained per threshold can be interpreted as evidence
against the GPD model when it is close to 0 or 1. Furthermore p-values close to
0.5 can be understood as showing less incompatibility with the GPD model [25],
[24].

Figure 12 (top left) shows the method applied to the non-jitter data set.
It only manifests less incompatibility with the GPD model for high threshold
values, i.e., 190 < u < 200 mmHg. Moreover, the p-values demonstrate a switch
in surprise when more data is considered, i.e., when we introduce data below
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Figure 8: Exponential QQplots and histograms for each threshold candi-
date for the non-jitter data.

190 mmHg, the p-values move away from 0.5 and tend to 0, suggesting more
incompatibility with the GPD model. On the other hand, the p-values obtained
for both jitter cases do not seem to change a great deal until the data below 150 is
considered. This method seems sensible to the jitter process, even for the case of
the mild beta jitter, since it produces overall higher p-values in both jitter cases.
Based on the output we are led to select a high threshold value for the non-jitter
case, i.e., a value between 190 mmHg and 200 mmHg. Both jitter cases seem
to indicate that 150 mmHg is an acceptable threshold, since there is a change
in surprise from 140 mmHg to 150 mmHg, meaning that the predictive p-value
obtained from 150 mmHg is closer to 0.5 than the one obtained from 140 mmHg.
Furthermore, for the remaining threshold values, the obtained predictive p-values
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Figure 9: Exponential QQplots and histograms for each threshold candi-
date for the uniform-jitter data.

do not appear to change too much.

Next, we present the automated threshold selection method using goodness-
of-fit tests for each of the previously mentioned data sets. We will adopt the
ForwardStop rule outlined in [2] and [17]. Let u1, u2, ..., um be a sequence of
increasingly ordered threshold candidates for a given data set, and consider that
H1

0 , H
2
0 , ...,H

m
0 , are m null test hypotheses such that for some 1 ≤ i ≤ m, the ith

null hypothesis is defined as H i
0 : the excesses over ui come from a generalized

Pareto distribution. Let p1, p2, ..., pm be the p-values obtained using the Cramér-
Von Mises goodness-of-fit test for each sample. The FowardStop rule is given
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Figure 10: Exponential QQplots and histograms for each threshold candi-
date for the beta-jitter data.

by

(4.1) î = max
{
i ∈ {1, ...,m} : −1

i

i∑
j=1

log(1− pj) ≤ α
}
,

where α is the significance level. The method consists on computing the p-values
at each threshold, starting from the smallest until (4.1) is satisfied. Once î is
obtained we reject Hi for some i = 1, ..., î thereby not rejecting the null hypothesis

at î+ 1 and accepting the threshold associated with H î+1
0 .
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Figure 11: Mean residual life function for the non-jitter data (top left),
uniform-jitter data (top right) and beta jitter data (bottom).

threshold num.above p-values fowardstop statistic
140 7113 2.4221e-47 ∼0 3.3111
150 4012 1.3233e-46 ∼0 5.3901
160 2065 1.1008e-06 3.66926e-07 0.6684
170 973 1.4698e-05 3.9497e-06 0.5456
180 416 1.4609e-03 2.9556e-04 0.3260
190 173 6.8810e-02 1.2128e-02 0.1320
200 53 1.6762e-01 3.6604e-02 0.0988

Table 7: Results of the automated threshold selection using the Cramér-
Von Mises goodness-of-fit tests for the non-jitter data set.

Table 7 illustrates the results of the FowardStop rule for the non-jitter data
using the R package eva as outlined in [2]. The results show that we should re-
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Figure 12: Bayesian threshold selection method using measure of surprise
for the non-jitter (top left), uniform-jitter (top right) and beta-
jitter data (bottom). The value u represents the SBP threshold.

ject the first five hypotheses at α = 0.01 and select 190 mmHg as the adequate
threshold, since the fifth test is the last test where the FowardStop mean, indi-
cated in (4.1), is still below 0.01. We would like to point out that these results
are in accordance with the results obtained from the Bayesian threshold selection
method. Table 8 shows the results of the FowardStop rule for the uniform-jitter
data set. Here the rule proposes a lower threshold. Effectively, 190 mmHg is the
first threshold that produces a p-value above 0.01. However, this p-value is much
larger than 0.01, which suggests that a proper threshold might lie between 180
mmHg and 190 mmHg.

Table 9 shows the FowardStop rule results for the beta-jitter data set. Here
the first 5 hypotheses are rejected at α=0.01, suggesting that 190 is an adequate
threshold.

Finally, u = 190 mmHg was the threshold selected for the three cases. The
parameters, k and σ of the GPD fitted models for each data set are presented in
Table 10.
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threshold num.above p-values fowardstop statistic
140 7593 1.4383e-67 ∼0 7.9165
150 4391 2.5836e-08 1.2918e-08 0.8708
160 2269 1.4901e-03 4.9709e-04 0.3264
170 1064 2.0113e-03 8.7615e-04 0.3118
180 471 3.5537e-03 1.4129e-03 0.2763
190 196 5.7393e-01 1.4337e-01 0.0496
200 63 1.5124e-01 1.4631e-01 0.0960

Table 8: Results of the automated threshold selection using the Cramér-
Von Mises goodness-of-fit tests for the uniform-jitter data set.

threshold num.above p-values fowardstop statistic
140 7628 5.2077e-25 ∼0 2.8071
150 4391 1.9948e-18 ∼0 1.9746
160 2260 5.7836e-09 1.9279e-09 0.9210
170 1072 1.2669e-06 3.1817e-07 0.6539
180 468 1.3996e-04 2.8249e-05 0.4265
190 227 1.2325e-01 2.1946e-02 0.1095
200 74 1.8077e-01 4.7295e-02 0.0930

Table 9: Results of the automated threshold selection using the Cramér-
Von Mises goodness-of-fit tests for the beta-jitter data set.

u N n k̂ 95% CI for k σ 95% CI for σ max endpoint −log(L)
MI 190 8174 173 -0.049 (-0.190,0.093) 10.50 (8.34,12.65) 240 406.08 571.34
MII 190 7593 196 0.062 (-0.097,0.222) 8.37 (6.60,10.15) 238.50 ∗ 624.78
MIII 190 7628 192 0.062 (-0.100,0.224) 8.47 (6.65,10.29) 239.98 ∗ 614.13

Table 10: GPD(k,σ) models fitted to the non-jitter (MI), uniform-jitter
(MII) and beta-jitter (MIII) data. (∗) indicates the support
does not have an upper finite boundary.

The results presented in Table 10 were obtained using the gpd.fit function
from the ismev R package.

Table 10 shows that the estimates of k are very close to zero, which indicates
that the GPD might be reduced to the exponential model. Although the 95%
confidence intervals contain zero, they are skewed to the left for the model fitted
to the original data and to the right in the other two cases.

In order to evaluate whether the three GPD(k,σ) models can be reduced
to the more parsimonious exponential model, a hypothesis test was performed.
The null hypothesis H0 : k=0 was tested against H1 : k 6=0 using the likelihood
ratio test. Under H0,

T = 2
(
lM1(x)− lM2(x)

)
∼ χ2

1,

where in this case lM1 is the log-likelihood function for the GPD(k,σ) model and



Modeling Large Values of Systolic Blood Pressure in the Portuguese Population 183

lM2(x) is the log-likelihood function for the exponential model. The results are
presented in Table 11. The large p-values obtained support that the exponential
model should be selected in the three cases.

Model lM1 lM2(x) T p
Non-jitter -571.3383 -571.7379 0.7992268 0.3713246
Uniform-jitter -624.7814 -625.5246 1.486305 0.2227907
Beta-jitter -614.1304 -614.8442 1.427657 0.2321473

Table 11: Results of the deviance test for non-jitter model, uniform-jitter
model and beta jitter-model.

Table 12 presents a comparison between some empirical quantiles and
model quantiles. It is important to note that this comparison does not serve
as a true accuracy measure of the model performance since the extreme empir-
ical quantiles were calculated with a very small number of observations. The
empirical quantile estimation was obtained using the R function quantile. The
uniform-jitter model and the beta-jitter model supplied highly accurate quantile
estimates when compared to the empirical ones.

Model Empirical Model IC 95% Empirical Model IC 95%
q0.99 q0.99 q0.99 q0.995 q0.995 q0.995

Non-jitter 198.00 197.51 (196.38,198.63) 203.00 204.45 (202.29,206.60)
Unif-jitter 198.63 198.47 (197.28,199.66) 203.98 204.66 (202.60,206.71)
Beta-jitter 198.69 198.33 (197.15,199.52) 203.95 204.59 (202.52,206.66)

Table 12: Extreme quantiles for the uniform-jitter model, beta-jitter
model and non-jitter model using the exponential model.

Table 12 shows that the fitted models perform in a very similar way in
terms of extreme quantile estimation, irrespective of the data set being used.
This result is quite unexpected and it shows that the discretization of the SBP
readings did not, after all, produce significant inaccuracies.

Next we extrapolate on the likelihood of observing an individual with SBP
value higher than the maximum value observed in each data set using the non-
jitter, uniform-jitter and beta-jitter exponential models.

• Non-jitter model: ̂P (SBP > 240) = 0.000143

• Uniform-jitter model: ̂P (SBP > 238.5) = 0.000113

• Beta-jitter model: ̂P (SBP > 239.98) = 0.000099

The resulting probability from the non-jitter model is higher than both
probabilities produced by the jitter models, which is a consequence of the non-
jitter and jitter models providing dissimilar scale parameter estimates, σ̂ =10.01
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for the non-jitter model and σ̂ =8.93 and σ̂ =9.03 for the uniform-jitter and beta-
jitter models, respectively. Moreover, the resulting probabilities from the jitter
models yielded similar results. The deflated estimates of the scale parameters for
the jittering models might be a consequence of the jittering process considered.

5. CONCLUSION

Preliminary analysis of the resulting jitter data sets demonstrate that we
have been successful in breaking the discrete feature of the recorded data, see
Figure 7. Moreover, the jittering process did not alter the data a great deal, as
described in Table 6.

The threshold u = 190 mmHg was in the end selected for each case and
subsequently the models were fitted to the data. Table 10 displays the estimated
parameters for the model. Although the fitted k is negative for the non-jitter
data and positive for both cases of jitter data, all the values are very close to
zero reflecting an exponential tail. In fact, the 95% confidence intervals for the
shape parameter, in each case, includes 0. This conjecture is further investigated
by applying the deviance test. The results indicate that there are no significant
differences between the GPD and the exponential distribution for each case, as
displayed in Table 11. Future work could be developed using other jittering
distributions. For example, a stronger jitter could be applied to the values with
higher than normal absolute frequencies and a milder jitter to the remaining data.
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1. MOTIVATION AND INTRODUCTION

Extreme Value Theory (EVT) is concerned with the behaviour of extreme
values, i.e, values occurring at the tails of a probability distribution. Society,
human life, etc. tend to adapt to near-normal conditions, and these conditions
tend to produce fairly minimal impacts. In contrast, unusual and extreme condi-
tions can have a substantial impact despite, by definition, occurring in a very low
proportion of times. EVT is the branch of probability and statistics dedicated
to characterizing the very low or quite high values of a variable, the tail of the
distribution. EVT had its beginnings in the early to middle part of XX century
and Emil Gumbel was the pioneer in applications of statistics of extremes. In
Statistics of Extremes [23], he presents several applications of EVT on real world
problems in engineering and in meteorological phenomena. In this book appear
the first applications in hydrology.

Results in EVT rely on certain assumptions. However in some situations
they can be not fulfilled. So, before dealing with an application, it is important
to have an a priori knowledge on whether the underlying distribution verifies
those assumptions. On the other hand statistical inference procedures should be
performed according to the most adequate domain of attraction for the underlying
distribution. So, tests for extreme value conditions and for the choice of the tail
must be done before the application of any inferential procedure.

The motivation for this work came from a first study in Neves et al. [34]
and Penalva et al. [36] presenting a review of tests and parameter estimation
procedures applied to the daily mean flow discharge rate in the hydrometric
station of Fragas da Torre in the river Paiva. The data were collected from
1946/47 to 2005/2006, i.e., 60 years of data. In Penalva et al. [36] we drew
the attention for the need of a previous analysis for assessing extreme value
conditions and for the choice of the extreme value domain, in order to choose
the more adequate parameter estimators. We will review briefly the analysis
already performed considering the data now available during 66 years, 1946/2012
and using, for comparison, two recent classes of estimators of the tail index of
the extreme value distribution, introduced in Penalva et al. [37] and Gomes et
al. [21].

The procedures proposed are also applied and commented to another data
set referring to burned areas of wildfires in Portugal during 33 years (1984–2016).

So, the aim of this work is to perform an univariate extreme value analysis
illustrating and reviewing tests on the extreme value condition and on the sta-
tistical choice of the tail of the underlying distribution. This should be the first
step in order to choose the more adequate estimators. Some recent estimators of
the tail index are also compared.

The paper proceeds as follows. Section 2 contains the main results that are
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the basis of the theoretical background. In Section 3 the exploratory analysis of
the first case-study aforementioned is performed, parametric and semi-parametric
statistical approaches in EVT are briefly reviewed and first estimates of the main
parameters are presented. In Section 4, statistical testing procedures for extreme
value conditions and for choosing the tail are presented and applied to the data.
Section 5 is dedicated to perform the study and estimation in a second case-
study, showing the adequate procedure of performing the study. Finally Section
6 presents a first practical application on the effect of taking into consideration
or not the choice of the tail of the underlying distribution and consequently the
adequate EVI estimation. For the first case study, where estimation discrepan-
cies were detected when the choice of the tail was made previously or not, high
quantiles are estimated. A few comments on some other parameters that could
be considered and the work in progress finish this section.

2. THEORETICAL BACKGROUND

Let us assume that we have a sample (X1, . . . , Xn) of independent and iden-
tically distributed (iid) or possibly stationary, weakly dependent random variables
from an unknown cumulative distribution function (cdf) F . Let us consider the
notation (X1:n ≤ X2:n ≤ · · · ≤ Xn:n) for the sample of ascending order statistics
associated to that sample.

The interest is focused on the distribution of the maxima, that is, Mn :=
max(X1, . . . , Xn), for which we have

P (Mn ≤ x) = P (X1 ≤ x, . . . ,Xn ≤ x)

= P (X1 ≤ x) . . .P (Xn ≤ x) = Fn(x).(2.1)

We often deal with the maxima, given the “kind of symmetry”, min
(
X1, . . . , Xn

)
= −max

(
−X1, . . . ,−Xn

)
.

This problem has similarities to that one of determining the distribution
of Sn =

∑n
i=1Xi. Obviously Sn and possibly Mn may tend to infinity, and their

distribution is a degenerate one. The central limit theorem gives an answer to this
problem under some conditions, showing that the normal distribution is obtained
as the non-degenerate limit of Sn properly normalized by E[Sn] and

√
V ar[Sn].

As n goes to ∞, the distribution Fn in (2.1) has a trivial limit: 0, if
F (x) < 1 and 1, if F (x) = 1. So the idea for Mn was the same: first subtract a
n−dependent constant, then rescale by a n−dependent factor. The first question
is then whether one can find two sequences, {an} ∈ R+ and {bn} ∈ R and a non-
trivial distribution function, G, such that limn→∞ P ((Mn − bn)/an ≤ x) = G(x).

First results on the G distribution are due to Fréchet [17], Fisher and
Tippet [12], Gumbel [22] and von Mises [40]. But were Gnedenko [19] and de
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Haan [24] who gave conditions for the existence of those sequences {an} ∈ R+

and {bn} ∈ R such that when n→∞ and ∀x ∈ R,

(2.2) lim
n→∞

P
(
Mn − bn

an
≤ x

)
= lim

n→∞
Fn(anx+ bn) = EVξ(x).

EVξ is a nondegenerate distribution function, denoted as the Extreme Value cdf,
given by

(2.3) EVξ(x) =

{
exp[−(1 + ξx)−1/ξ], 1 + ξx > 0 if ξ 6= 0
exp[− exp(−x)], x ∈ R if ξ = 0.

When the above limit holds we say that F is in the domain of attraction (for
maxima) of EVξ and write F ∈ DM(EVξ).

The shape parameter ξ, in (2.3), is called the extreme value index (EVI) and
it is the primary parameter of interest in EVT analysis. The EVξ incorporates
the three (Fisher-Tippett) types: Gumbel, with ξ = 0, the right tail of F is of
an exponential type; Fréchet with ξ > 0, the right tail is heavy, of a negative
polynomial type, and F has an infinite right endpoint and Weibull with ξ < 0,
the right tail is light, and F has a finite right endpoint (x∗ < +∞).

These models can also incorporate location (λ) and scale (δ > 0) parame-
ters, and in this case, the EV cdf is given by,

(2.4) EVξ(x;λ, δ) ≡ EVξ((x− λ)/δ).

We may then consider, when the sample size n −→∞, the approximation

P [Mn ≤ x] = Fn(x) ≈ EVξ((x− bn)/an).

3. FIRST CASE-STUDY – A REVIEW

The source of river Paiva is in the Serra de Leomil in the North of Portugal
and it is a tributary of the river Douro, with a watershed area of approximately
700 Km. The discharge rate study of this river is a matter of major importance
since it is one of the main alternatives to the river Douro as source of water
supply in the south of Oporto region. The data are daily mean flow discharge
rate values (m3/s) from 1 October, 1946 to 30 September, 2012 - collected from
the “SNIRH: Sistema Nacional de Informação dos Recursos Hı́dricos”.

The descriptive study of these data revealed a tail heavier than that of the
normal. Results in Table 1 are similar to those in Penalva et al. [36].

EVT has been developed under two frameworks. The first one is the para-
metric framework, that considers a class of models associated to the limiting
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min 1st Qu. Median Mean 3rd Qu. max
0.00 9.11 17.1 34.4 37.3 920.0

n Skewness Kurtosis St Dev
11946 4.14 27.13 50.26

Table 1: Descriptive statistics for daily mean flow discharge rate values.

behaviour of the maxima, given in (2.2). The main assumption behind the para-
metric approach is that estimators are calculated considering the data following,
approximately, an exact EV probability distribution function, defined by a num-
ber of parameters. In this approach several methodologies have been developed
for estimating parameters: Block Maxima; Largest Observations; Peaks Over
Threshold, to refer the most well known.

In the semi-parametric framework, the only assumption made is that the
limit in (2.2) holds, i.e., that the underlying distribution verifies the extreme
value condition. The EVI, ξ, that appears in (2.3), plays the central role in this
framework. Under this approach several EVI-estimators have been developed.
Some of the most relevant and also the most recent ones will be used here in the
estimation.

As an illustration of parametric approaches to estimate EVT parameters,
only the Block Maxima (BM) approach will be considered in this work. Other
procedures can be seen in Penalva et al. [36].

3.1. The Block Maxima (BM) method

The so-called Block Maxima (BM), Annual Maxima or Gumbel’s method
is the first parametric approach for modelling extremes, Gumbel [23]. In this ap-
proach the n−sized sample is splitted into m sub-samples (usually m corresponds
to the number of the observed years) of size l (n = m× l) for a sufficiently large
l. EVξ or one of the models, Gumbel, Fréchet or Weibull, with unknown ξ ∈ R,
λ ∈ R or δ ∈ R+ are then fitted to the m maxima values of the m sub-samples.

Table 2 and Figure 1 show a very light positive asymmetry and kurtosis.
It is also reasonable to consider data not correlated.

min 1st Qu. Median Mean 3rd Qu. max
32.2 177.25 261.5 279.24 371.5 920.0

m Skewness Kurtosis St Dev
66 0.99 2.308 157.17

Table 2: Basic descriptive statistics for the maximum values in each year.
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Figure 1: Plots of the maximum value in each year, the partial autocor-
relation function, the histogram and the boxplot.

Maximum likelihood estimates and standard errors were easily obtained
using the evd package in software [38].

ξ̂ λ̂ δ̂

-0.03 (0.08) 207.74 (17.52) 127.11 (12.72)

Table 3: Maximum likelihood estimates and standard errors (in paren-
thesis).

3.2. Semi-parametric estimators

In this framework we do not need to fit a specific parametric model based
on scale, shape and location parameters. We construct an EVI-estimator based
on the largest k top observations, with k intermediate, i.e. such that k = kn →∞
and k/n→ 0, as n→∞, assuming only that the model F underlying the data is
in DM(EVξ), in specific sub-domains of DM(EVξ), with EVξ provided in (2.3).

Most estimators show a strong dependence on that value k. They usually
present: a small bias and a high variance for small values of k;bias increases and
variance decreases when k increases; the need of looking for an adequate value of
k for which we have a minimum Mean Square Error. Thus, an intensive research
has been performed trying to obtain estimators overcoming these difficulties.
Currently there are several different EVI-estimators, so we decide to present and
compare here a very few. Here we will illustrate the application of the following
estimators: the classical Hill estimator, Hill [27], and a recent class of estimators,
the Lehmer mean-of-order-p (Lp) estimators, Penalva et al. [37] and Penalva [35],



194 Helena Penalva, D. Prata Gomes, M. Manuela Neves and Sandra Nunes

both defined for ξ > 0. Two of the estimators developed for ξ ∈ R are here
considered: the Moment estimator, Dekkers et al. [8] and the Mixed Moment
estimator, Fraga Alves et al. [16].

Recently, Caeiro et al. [4] introduced a class of reduced bias EVI-estimators.
This class can not only reduce the bias of the classical estimators but also do not
increase the asymptotic variance of the estimators, for adequate levels of k and
adequate estimation of parameters of second-order (β, ρ) ∈ (R,R−). These are
the scale and the shape second-order parameters, controlling the rate of first-
order convergence, and necessary for establishing distributional properties of the
estimators. Details on second-order conditions can be found in Beirlant et al. [2],
de Haan and Ferreira [25] and Fraga Alves et al. [15], among others. Those
estimators are then denoted minimum-variance reduced biased (MVRB) EVI-
estimators. We will consider two of those estimators, one based on the Hill and
the other on the Lp estimators, see Gomes et al. [21].

Let X1:n ≤ X2:n ≤ · · · ≤ Xn:n be the order statistics associated to the
sample (X1, X2, . . . , Xn).

Let us define the log-excesses as Vik := lnXn−i+1:n−lnXn−k:n, and M
(l)
k,n :=

1
k

∑k
i=1 [Vik]

l, for l ∈ R \ {0}, and L
(r)
k,n := 1

k

∑k
i=1

[
1− Xn−k:n

Xn−i+1:n

]r
, for r ≥ 1.

The aforementioned estimators have the functional definitions:

• The Hill estimator, H, defined for ξ > 0, as

(3.1) ξ̂H(k) ≡ H(k) :=
1

k

k∑
i=1

Vik, k = 1, 2, . . . , n− 1.

• The Moment estimator, M, defined for ξ ∈ R, as

(3.2) ξ̂Mk,n := M
(1)
k,n + 1− 1

2

1−
(M

(1)
k,n)2

M
(2)
k,n

−1 , k = 1, 2, . . . , n− 1.

• The Mixed Moment estimator, MM, defined for ξ ∈ R, as

(3.3) ξ̂MM
k,n :=

ϕ̂k,n − 1

1 + 2 min(ϕ̂k,n − 1, 0)
, k = 1, 2, . . . , n− 1,

where

ϕ̂k,n :=
M

(1)
k,n − L

(1)
k,n(

L
(1)
k,n

)2 .

• The class of Lehmer mean-of-order-p (Lp) estimators, defined for ξ > 0 and
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p > 0, as
(3.4)

ξ̂L(k) ≡ Lp(k) :=
1

p

k∑
i=1

V p
ik

k∑
i=1

V p−1
ik

, k = 1, 2, . . . , n− 1,
[
L1(k) ≡ H(k)

]
.

• The class of corrected-Hill (CH) EVI-estimators, defined by

(3.5) CH(k) := H(k)
(

1− β̂(n/k)ρ̂/(1− ρ̂)
)
, k = 1, 2, . . . , n− 1,

where H(k) is the Hill estimator and β̂ e ρ̂ are consistent estimators of
parameters β e ρ. The use of CH(k) enables us to eliminate the dominant
component of bias of the H EVI-estimator, H(k), keeping its asymptotic
variance.

• More generally than the class in (3.5), we shall now also consider the direct
reduction of the dominant bias component of Lp(k), in (3.4), working with
the RB Lehmer’s EVI-estimators, Gomes et al. [21], defined by

(3.6) LRB
p (k) := Lp(k)

(
1− β̂(n/k)ρ̂/(1− ρ̂)p

)
, k = 1, 2, . . . , n− 1,

[LRB
1 ≡ CH in (3.5)]

Figure 2 shows the sample paths of estimates obtained when using the
aforementioned estimators.

Values of p in Lp(k) and LRB
p (k) were chosen using criteria given in Pe-

nalva [35].

The discrepancies observed, already noticed in Penalva et al. [36], regard-
ing the results of the above EVI-estimators and also compared with the results
obtained under the parametric approaches claim for tests on extreme value do-
main of attraction. This emphasizes the care to be taken with the choice of the
estimators, because even having very nice and stable paths, if conditions of their
applicability are not verified, they may not stabilize near the true value of the
parameter.

4. TESTING CONDITIONS IN EVT LIMITING RESULTS

In any of the above procedures it is assumed that the underlying cdf F
belongs to DM(EVξ), for a appropriate value of ξ, or it is in specific sub-domains
of DM(EVξ). This condition is known as the extreme value condition.
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Figure 2: Sample paths of the EVI-estimates considered.

4.1. Testing the extreme value condition

It is then important, before any application, to check the assumption:

(4.1) H0 : F ∈ DM(EVξ) for some ξ ∈ R.

Some tests for the hypothesis H0 are available, such as those in Dietrich et al. [9],
Drees et al. [10] and Hüsler and Li [28].

Let X1, X2, . . . , Xn be iid random variables with cdf F and suppose that
some additional second order conditions hold then, for η > 0, Dietrich et al. [9]
introduced the test statistic written as

(4.2) En := k

∫ 1

0

(
logXn−bktc,n − logXn−k,n

ξ̂+
− t−ξ̂− − 1

ξ̂−

(
1− ξ̂−

))2

tηdt,

where k is again an intermediate sequence such that k = kn → ∞, k/n → 0
and k1/2A(n/k) → 0 as n → ∞ and A is related to the second order condition
already referred to and ξ̂+ and ξ̂− are the moment estimators, Dekkers et al. [8],
of ξ+ := max(0, ξ) and ξ− := min(0, ξ).

Hüsler and Li [28] present an algorithm for testingH0 using the test statistic
En in (4.2). They have carried out an extensive simulation study with guidelines
for obtaining the value of η and have provided quite accuracy tables for the
quantiles χ1−α of the variable limiting of En, see Hüsler and Li [28] for details.
Values of En are compared with values of χ1−α: if En > χ1−α hypothesis H0 is
rejected with a type I error α. Otherwise there is no reason to reject H0.



Statistical Testing and Estimation in Extreme Value Theory 197

For our data, the application of the test based on (4.2), provided values
of the test statistic smaller than the corresponding asymptotic 0.95−quantile for
a large range of k−values. So, since the sample path of test statistic is almost
always outside the rejection region, except for a small range of k, we find no
evidence to reject the null hypothesis, see Figure 3.
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Figure 3: Plot of the sample paths for the E-test, based on the test statistic
in (4.2) and the corresponding quantile. Available sample size
n = 11946.

See also Hüsler and Li [28], Neves and Fraga Alves [32] and Penalva et
al. [36] for a description of other tests.

4.2. Statistical choice of extreme domains of attraction

Once the hypothesis H0 : F ∈ DM(EVξ) is not rejected, it is of major
importance to decide for the type of the tail, i.e., the natural hypothesis testing
are now:

(4.3) H0 : F ∈ DM(EV0) vs H1 : F ∈ DM(EVξ)ξ 6=0,

or against the one-sided alternatives

F ∈ DM(EVξ)ξ<0 or F ∈ DM(EVξ)ξ>0.

This is known as the statistical choice of extreme domains of attraction.

Under the semiparametric framework, several tests have been proposed
in literature, among which we can mention: Galambos [18], Castillo et al. [5];
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Hasofer and Wang [26]; Falk [11]; Correia and Neves [7], that considered the
Hasofer and Wang statistic and presented a slight modification. An extensive
simulation study has been performed in Fraga Alves and Gomes [13], Marohn [29,
30], Fraga Alves [14] and Segers and Teugels [39]. Castillo et al. [5] considered
tests to distinguish between polynomial and exponential tails, based on properties
of the coefficient of variation (CV).

Neves and Fraga Alves [32, 33] studied the following tests statistics, that
will be here applied.

The Ratio-test:

(4.4) R∗n(k) :=
Xn:n −Xn−k:n

1
k

∑k
i=1 (Xn−i+1:n −Xn−k:n)

− log k
d−→

n→∞
EV0.

The Gt-test:

(4.5) Gn(k) :=
1
k

∑
i=1 (Xn−i+1:n −Xn−k:n)2(

1
k

∑k
i=1Xn−i+1:n −Xn−k:n

)2 ,
and

G∗n(k) =
√
k/4 (Gn(k)− 2)

d−→
n→∞

N(0, 1).

The HW-test:

(4.6) Wn(k) :=
1

k

[
1− Gn(k)− 2

1 + (Gn(k)− 2)

]
,

and
W ∗n(k) =

√
k/4 (kWn(k)− 1)

d−→
n→∞

N(0, 1).

For the two-sided tests R∗, G∗ or W ∗, the null hypothesis is rejected if
R∗(G∗)(W ∗) < χα/2 or R∗(G∗)(W ∗) > χ1−α/2, where χp is the p probability
quantile of the corresponding limiting distribution.

For the one-sided tests, the null hypothesis is rejected in favour of either
unilateral alternatives, for example, for R∗n,

H l
1 : F ∈ DM (EVξ)ξ<0 or Hr

1 : F ∈ DM (EVξ)ξ>0,

if
R∗n(k) < χα or R∗n(k) > χ1−α.

Figure 4 illustrates the application of those tests.

These tests suggest the non rejection of the null hypothesis, leading us
to consider that the underlying distribution of the data are in the domain of
attraction of the Gumbel distribution.
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Such as we have already pointed out in Penalva et al. [36], with fewer years
of data, we think that this explains the discrepancy observed in Figure 2, where
were plotted sample paths of very well behaved EVI-estimators, but not adequate
to the tail of the data under study. We claim again for the need of performing at
first the tests described and illustrated briefly in this Section.

5. SECOND CASE-STUDY – THE ANALYSIS

The second set of data analysed in this work, and also studied in Gomes
et al. [20] based on a shorter period of time, consists of the burned area (ha), in
Portugal, related to each of the wildfires occurred in a period from 1984 to 2016,
exceeding 100 ha, making a total of 6507 observations. The data analysed here
do not seem to have a significant temporal structure. This new data set is used
to illustrate what we have just commented.

The main results of a graphical and descriptive analysis are shown in Table
4 and in Figure 5. Tables and graphics provide evidence on the heaviness of the
right tail. Notice that similar conclusions were obtained by Beirlant et al. [1], for
data analysis of burned area of wildfires exceeding 100 ha, recorded in Portugal
from 1990 till 2003 (n = 2627).

See in Figure 6 the application of the test to the extreme value condition,
based on (4.2). We find no evidence to reject the null hypothesis, i.e., F ∈
DM(EVξ).
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min 1st Qu. Median Mean 3rd Qu. max
100 138.55 215.81 485.35 427.51 58012.75

n Skewness Kurtosis St Dev
6507 19.01 568.90 1407.58

Table 4: Descriptive statistics for burned area of wildfires exceeding
100ha.
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Figure 5: Plot of burned areas, histogram and boxplot, for wildfires, ex-
ceeding 100 ha.
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Figure 6: Plot of the sample paths for the E-test, based on (4.2) statistics,
with the corresponding quantile. Available sample size n =
6507.

The tests to the statistical choice of the tail, such as was described and
presented in Subsection 4.2, produced now the plots presented in Figure 7. Those
tests suggest the rejection of the null hypothesis, leading us to consider that the
underlying distribution of the data is in the domain of attraction of the Fréchet
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distribution.
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Figure 7: Sample paths of the statistics R∗
n, with the associated quantiles

χ0.025 and χ0.975 for the standard Gumbel distribution in dashed
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Here we will consider again, in the BM methodology, blocks as the years of
observations, m = 33. Figure 8 and Table 5 were obtained for the burned area
of wildfires exceeding 100 ha.

min 1st Qu. Median Mean 3rd Qu. max
641.33 2860.10 6235.83 8956.80 8652.43 58012.75

m Skewness Kurtosis St Dev
33 2.90 9.85 10889.31

Table 5: Basic descriptive statistics for maximum values in each year.
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Figure 8: Maximum value of burned areas in each year, histogram and
boxplot.
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Below are given the estimates of the main parameters.

ξ̂ λ̂ δ̂

0.52 (0.21) 4007.95 (754.45) 3599.50 (727.93)

Table 6: Maximum likelihood estimates (standard errors in parenthesis).

The ξ estimate corroborates the first idea pointing that the data present
clearly a tail heavier than that one of the first case-study.

Figure 9 shows the sample paths of estimates obtained using the aforemen-
tioned estimators. Values of p in Lp(k) and LRB

p (k) were also chosen using criteria
given in Penalva [35]. A quick analysis of the sample paths of the EVI-estimates
allow us to consider as ξ̂ a value between 0.55 and 0.65, which is also in agreement
with a heavy tail detected for the underlying cdf F and with the result obtained
under the parametric approach.
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Figure 9: Sample paths of the EVI-estimates considered.

6. FIRST COMMENTS ON PRACTICAL EFFECTS OF
MISSING THOSE TESTS. A FEW COMMENTS

We showed, with this work based on the two case-studies, that the real-
ization of tests on the extreme value conditions and on the statistical choice of
the tail of the underlying distribution are with no doubt the first step to prop-
erly apply the several estimation approaches and to choose the more adequate
estimators.
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A first illustration of the practical effects in the estimation of other im-
portant parameters when the choice of the tail is performed or not a priori, is
presented. It is well known how an accurate EVI estimation is important because
it dominates the tail behaviour of a distribution. However in several situations,
such as risk management or catastrophic situations, where human lives can be
in danger, in addition to modelling the tails, other parameters are of the major
importance to be estimated, such as extreme quantiles, return levels or return
periods of the distribution of the process at risk. For the first case study, high
quantiles were estimated.

While it is true that EVI determines the asymptotic behaviour of the tail
and the quantiles of a distribution, other parameters (for example, scale and lo-
cation) are no less important for an accurate estimation of quantiles, see Matthys
and Beirlant [31] and Caeiro and Gomes [3], among others.

In the first example studied, Section 3., and in the parametric approach, a
negative value, although very close to zero, was obtained for ξ̂. Now considering
the location and scale parameters estimates and by inverting the EVξ cdf in (2.3),
for ξ 6= 0, the extreme quantiles, for very small values of p, can be easily estimated
as

(6.1) χ̂1−p := λ̂− δ̂

ξ̂

[
1− (− ln(1− p))−ξ̂

]
.

For example, for p = 0.01, 0.001, 0.0001, the corresponding quantile estimates are
χ̂0.99 = 753.9114; χ̂0.999 = 1000.7254 and χ̂0.9999 = 1230.6420.

In the semi-parametric framework, and using the estimates displayed in
Figure 2 that show a more stable sample path (and also the Hill estimates as
reference), as usually is done, high quantile estimates, also for the previous values
of p were calculated.

It was used the moment estimator described in Matthys and Beirlant [31],
subsection 2.3, defined as:

(6.2) χ̂ξ̂1−p,k+1 := Xn−k:n â
ξ̂
n,k+1

cn
ξ̂ − 1

ξ̂
; cn :=

k

np
for k < n

with

âξ̂n,k+1 =
Xn−k:n H

ρ1(ξ̂)
, ρ1(ξ) =

{
1 for ξ ≥ 0
1/(1− ξ) for ξ < 0.

where ξ̂ is a consistent estimator of ξ. Here the H, L8, CH and LRB8 estimates,
displayed in Figure 2, were used in (6.2).

Figure 10 shows the paths of χ̂0.99(k), χ̂0.999(k) and χ̂0.9999(k).

However, if we have first performed the statistical test in (4.3), we were
led not to reject the null hypothesis so we will consider ξ = 0. In this case the
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Figure 10: Sample paths of the quantiles estimates.

extreme quantiles can be estimated under the approach aforementioned, based
on the inversion of the EVξ cdf in (2.3), for ξ = 0, i.e.

(6.3) χ̂1−p(k) := λ̂− δ̂ ln (− ln(1− p)) ,

and for the previous values of p we will obtain χ̂0.99 = 788.3877; χ̂0.999 =
1079.6836 and χ̂0.9999 = 1370.4655.

We see that the quantiles estimates show large discrepancies among the
procedures used. It is then advisable to perform a careful choice of the tail and
also of the EVI-estimators in which the quantile estimates are based. This is out
of scope of this article and an important topic for future research.

The next challenge is modelling and estimating clusters of extreme values
since they are linked with incidences and durations of catastrophic phenomena.
Here, an important parameter comes into play, the extremal index θ, that char-
acterizes the degree of local dependence in the extremes of a stationary sequence.
It needs to be adequately estimated, not only by itself but because its influence
on other relevant parameters, such as a high quantile. Ignoring θ may lead to an
underestimation of marginal quantile of F and an overestimation of quantiles of
the EV.
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of Mathematics, 44, 423–453.

[20] Gomes, M.I.; Figueiredo, F. and Neves, M.M. (2012). Adaptive estimation
of heavy right tails: resampling-based methods in action, Extremes, 15, 463–489.

[21] Gomes, M.I.; Penalva, H., Caeiro, F. and Neves, M.M. (2016). Nonre-
duced versus reduced-bias estimators of the extreme value index-efficiency and
robustness. In “COMPSTAT 2016 22nd International Conference on Computa-
tional Statistics” (A. Colubi, A. Blanco and C. Gatu, Eds), 279–290.

[22] Gumbel, E.J. (1935). Les valeurs extrêmes des distributions statistiques, An-
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1. INTRODUCTION

In the clinical follow-up of a HIV/AIDS patient, the viral load values and
the CD4+T cells count, observed over time, constitute a set of non-equally spaced
observations. In general, no information between consultations is available. In
this context, it is clinically relevant to develop methods able to obtain a more
complete description of the individual time evolution, either between consecu-
tive consultations or for the prediction of evolution or disease progression. Vi-
ral dynamic models can be formulated through a system of nonlinear ordinary
differential equations, which enables to describe the temporal evolution of the
clinical parameters of a HIV patient [2, 10, 11]. In the last decades, a few lit-
erature studies show applications and developments in statistical methodologies
for model inference including those based on Bayesian inference [6]. Briefly, the
Bayesian approach incorporates non-informative prior distributions and yet the
corresponding algorithms require initial estimates for model’s parameters in or-
der to carry out the iterative updates of the parameters. For the estimation of
this initial estimates, the most commonly used approaches in practice are based
on nonlinear least squares [7, 8]. In this context, this work presents a nonlin-
ear programming approach to obtain the optimal estimates for the parameters
of a HIV dynamic model. Our proposal differs from previous approaches in the
fact that we add restrictions on the optimal estimate so that it verifies an equal
contribution of negative and positive deviations from observations. Furthermore,
the optimal estimate is restricted to be in-between lower and upper physiological
bounds. Note that the least square methods are implemented as optimization
problems requiring initial solutions to start the iterations. To cope with this lim-
itation, we consider as initial solution the minimum square error solution from
a set of 1000 uniform randomly-generated candidates on a uniform distribution
delimited by the lower and upper physiological bounds. Therefore, the proposed
method is fully automatic and does not require any other information to provide
the optimal estimate of the model’s parameters besides the data.

This paper is organized as follows: the methods concerning the description
of the mathematical HIV model and the estimation approach developed to obtain
the initial conditions for the model’s parameters are presented in Section 2. The
estimation approach is illustrated with simulated data that mimics the individual
temporal trajectories of three HIV patients. The simulation strategy is described
in Section 3, whereas the results on simulation and on real data from six HIV
patients [12] are presented in Section 4. The selected patients were chosen ac-
cording to some conditions, namely having started an antiretroviral treatment at
the beginning of the trial [12]. Finally, Section 5 is devoted to conclusions.
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2. METHODS

The dynamics of the HIV/AIDS infection is described through the math-
ematical model presented in Section 2.1. Model’s parameters are estimated
from the nonlinear programming approach described in Section 2.2. The de-
veloped algorithms and other software code used in this work were implemented
in MATLABTM (version R2015a), The Mathworks Inc., MA, USA.

2.1. Mathematical model

The mathematical model considered in this work translates known physi-
ological relationships between viral load and CD4+T cells and incorporates pa-
rameters having clinical interpretation. We consider a modified version of the
mathematical model in Stafford et al. [14] for the dynamics of HIV/AIDS infec-
tion, including an additional parameter ε that denotes the effectiveness of the
antiretroviral therapy [9]. The model is represented as

dT (t)

dt
= λ− d1T (t)− (1− ε)k1T (t)V (t),

dT ∗(t)

dt
= (1− ε)k1T (t)V (t)− δT ∗(t),(2.1)

dV (t)

dt
= π1T

∗(t)− cV (t),

where the state variables are the viral load V (t) and the number of CD4+T cells
defined as CD4(t) = T (t) + T ∗(t), with T (t) and T ∗(t) representing the number
of uninfected and infected CD4+T cells, respectively. Furthermore, for simplicity
in notation we denote (T (0), T ∗(0), V (0)) = (T0, T

∗
0 , V0) as the initial condition

of the model. Along with the states variables, the mathematical model also in-
corporates parameters with clinical interpretation, namely θθθ = (d1, ε, k1, δ, π1, c),
with definition and units listed in Table 1.

The mathematical model in (2.1) can be alternatively defined from the
flow-chart displayed in Figure 1.

T T∗ V
(1− ε)k1 π1

d1 δ c
λ

Figure 1: Schematic diagram of the model (2.1).

The chart presents a compartmental description of the model that trans-
lates the evolution of the disease at the patient level. Within each compartment
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Parameter Definition Units

d1 difference between rate loss from cell death and
rate gain due to cell division

day−1

λ = T0d1 proliferation rate of uninfected target cells cells ml−1

day−1

ε effectiveness of therapy

k1 infectivity rate ml day−1

δ death rate of infected cells day−1

π1 average number of virions produced by a single
infected cell

day−1

c clearance rate of free virions day−1

Table 1: Definition and units of the parameters included in (2.1).

there are CD4+T cells (non-infected or infected) or viral load. In this representa-
tion, these units can move between compartments. For instance, the susceptible
CD4+T cells in compartment T move to compartment T ∗ (infected cells) after
being infected with HIV at a rate equal to (1 − ε)k1, and infected CD4+T cells
of compartment T ∗ die at rate δ.

2.2. Nonlinear programming

The parameters in θθθ can be estimated from a set of CD4(t) values col-
lected in one HIV patient at its clinical follow-up appointments over time. Let
CD4(ti) be the observed number of CD4+T cells at time ti, i = 1, 2, . . . , n. Fur-

thermore, define ĈD4(ti) = T (ti) + T ∗(ti) as the estimate of CD4(ti) provided

by the mathematical model (2.1). The optimal parameter estimates, say θ̂̂θ̂θ, can
be obtained by minimizing the square error between model estimates and ob-
served CD4 values. In accordance with other literature studies [6], we considered
a log10-transformation on the parameters to ensure their positiveness and to sta-
bilize the CD4(t) variance. Thus, the nonlinear programming algorithm can be
formulated as

minimize f(θθθ) =
n∑

i=1

(ĈD4(ti)− CD4(ti))
2 =

n∑
i=1

e2ti

subject to
n∑

i=1

eti = 0(2.2)

and lblblb ≤ θθθ ≤ ububub

where the restriction guarantees that θ̂̂θ̂θ verifies equal contribution of negative
and positive deviations from observations. Also, θ̂̂θ̂θ is restricted to physiologi-
cal lower and upper bounds, respectively lblblb = (0.01, 0, 10−11, 0.24, 50, 2.39) and
ububub = (0.02, 1, 10−5, 0.7, 10000, 23) [5, 14]. This optimization procedure was imple-
mented with the MATLABTM function fmincon, that starts at an initial solution
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θθθ∗ to find a minimizer θ̂̂θ̂θ of f(θθθ) subject to the above-mentioned restrictions and
bounds. The initial solution θθθ∗ was obtained as that minimizing f(θθθ) in a set of
1000 candidates randomly generated from a multivariate uniform distribution on
lblblb and ububub.

The HIV dynamic model (2.1) was implemented with MATLABTM function
ode45. This function makes use of an explicit Runge-Kutta formula, namely the
Dormand-Prince pair [4], that computes the solution at time tk based on the
solution at time tk−1. Furthermore, when the integration is considered in a time
span, the algorithm runs with a variable time step for efficient computation.
In this case, temporal resampling is needed to obtain the solutions at specific
ti, i = 1, 2, . . . , n (continuous time). Alternatively, the solver can provide the
solution at requested time points ti with its own built-in interpolation algorithm
(discrete time). The differences between continuous/discrete time solutions were

used to determine if differences between solutions evaluated at θθθ and at θ̂̂θ̂θ are
numerically relevant.

3. SIMULATED DATA

The estimation procedure described above is illustrated through a simu-
lation study. In this work, regularly spaced CD4(t) and V (t) observations are
obtained within the interval [0, 120](days), by numerical Runge-Kutta integration
of Equation (2.1). Note that simulating data for regularly spaced observations is
not a limitation, as the model (2.1) can, in the same way, be applied to obtain
non-equally spaced measurements. We reproduce the evolution of three HIV pa-
tients with parameters θθθ0 presented in Table 2 [14]. Moreover, we considered the
initial conditions (T0, T

∗
0 , V0) = (11 × 103, 0, 10−6) with units ( cellsml ,

cells
ml ,

copies
ml ),

respectively, that mimics a condition with a large initial number of uninfected
cells T0 and low values for the initial number of infected cells T ∗0 and viral load
V0.

Patient d1 k1 δ π1 c

1 0.013 0.46× 10−6 0.40 980 3
2 0.012 0.75× 10−6 0.39 790 3
3 0.017 0.80× 10−6 0.31 730 3

Table 2: Parameter values used for the simulation of 100 replicas for 3
patients [14], in a total of 300 simulations. ε = 0 is considered.
Further description of the parameters can be found in Table 1.

Within this setting, we obtain a set of n = 18 observations represent-
ing the temporal trajectory of each patient in a clinical follow-up every 7 days
(ti ∈ {0, 7, 14, 21, 28, . . . , 119}, i = 1, 2, . . . , 18 and t1 = 0 is the time instant of the
first CD4+T observation of the patient). Afterwards, 300 replicas (100 replicas
for each patient) of that trajectory are randomly generated, by adding an error
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to the CD4+T values, in accordance with the fact that laboratory CD4+T mea-
surements have an error of about 20% of the measured value (i.e. e ∼ N(0,σσσ2e))
[15]. Note that the quadratic deviation (of the realizations) of e from zero is
such that

∑n
i=1 e

2
ti = f(θθθ0) ≈ σσσ2e(n − 1), as θθθ0 is the simulation reference. For

each replica, we obtain θ̂̂θ̂θ0 as the solution of the optimization problem. For the
purpose of illustration, Figure 2 shows one replica of each patient and highlights
the similarities and differences between patients.
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Figure 2: CD4(t) trajectory over time for the reference patients with the
θθθ parameters in Table 2. The circles represent the observations
obtained for one replica of that patient [13].

After infection with HIV, there is an acute phase characterized by an ac-
centuated decay of the number of CD4+T cells, since they are HIV preferred
target. This can be observed, in the graphs, between 30 and 40 days approx-
imately. The immune system tries to fight the virus by producing antibodies.
After this phase, the chronic phase of infection starts, defined by the body recov-
ery. It is observed a slight increase in the number of CD4+T cells. This feature is
shared for the three patients although the minimum and the maximum values of
the CD4+T cells vary between patients, before the CD4+T cells reach an almost
constant value. Biologically, since the CD4+T cells play a key role in the immune
response to pathogens, the differences in those values (namely, the minima) may
induce the development of more severe infections, e.g., certain types of cancers
and non-AIDS diseases.

4. RESULTS

In this section, the results are detailed for the simulations produced for
patient 2 (see corresponding set of reference parameters θθθ0 in Table 2). The per-
formance evaluation of the model with respect to simulated data was assessed
by f(θθθ) either appraised for θθθ0 (the reference simulation parameters) or θ̂̂θ̂θ0 (the
parameters estimated from simulated data). The function f(θθθ) translates the
goodness-of-fit of the model-based observations with respect to simulated data
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(see equation 2.2). Figure 3(a) shows the distribution of f(θθθ0) for the 100 repli-
cas of patient 2, where it is possible to observe that the values obtained for all
replicas are centered around that evaluated for the reference parameters in θθθ0.
Figures 3(b–c) display the CD4 trajectory lines obtained from θθθ0 and from θ̂̂θ̂θ0 for

two replicas with f(θθθ0) close to and higher than the reference value f(θ̂̂θ̂θ0), respec-
tively. As is illustrated in Figure 3(b), the estimation procedure provided similar

curves for f(θθθ0) close to f(θ̂̂θ̂θ0). Moreover, as presented in Figure 3(c) for a replica

with f(θθθ0) higher than f(θ̂̂θ̂θ0) (f(θθθ0) = 1.6×107 and f(θ̂̂θ̂θ0) = 1.0×107), there is a

relevant improvement of fit from θθθ0 to θ̂̂θ̂θ0, as θ̂̂θ̂θ0 produces a curve which is clearly
more adjusted to the simulated data than that obtained with θθθ0. Figure 3(c)
also suggests that the observations do not contribute equally to the performance
increase e.g. residuals at high derivative values (black dots) are increased for

f(θθθ0) and reduced when θθθ0 is replaced by θ̂̂θ̂θ0.
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Figure 3: (a) Distribution of f(θθθ0) evaluated for 100 replicas of patient
2 (i.e. sss2ê(n − 1) where ê are the residuals of the model with
parameters θθθ0, for each replica). The vertical line locates σσσ2

e(n−
1) = 1.2×107 used in the simulation. (b–c) CD4 trajectory line

from θθθ0 and optimized θ̂̂θ̂θ0 for two different replicas: (b) f(θθθ0) =

f(θ̂̂θ̂θ0) = 1.2×107 and (c) f(θθθ0) = 1.6×107 and f(θ̂̂θ̂θ0) = 1.0×107.
The circles represent the simulated observations and the black
dot highlights time t5.

Figure 4 further compares the modeling results for the replicas for patient
2. As observed in Figures 4(a–b), the distribution of f(θ̂̂θ̂θ0) is more shifted to-
wards the small deviations than f(θθθ0) and f(θθθ0) − f(θ̂̂θ̂θ0) is positive for almost
all replicas, thus evidencing that lower squared errors are achieved for θ̂̂θ̂θ0. More-
over, as illustrated in Figures 4(c–d), the f(θθθ0)−f(θ̂̂θ̂θ0) differences become higher
than those obtained by choosing continuous/discrete time option for the model
numerical resolution. This suggests that differences between f(θθθ0) and f(θ̂̂θ̂θ0) are
indeed relevant.

The result illustrated in Figure 3(c) suggested that the observations do not
contribute equally to the performance increase with special emphasis on high
derivative CD4 values. Figure 5(a) shows the association between performance
increase of θ̂̂θ̂θ0 with respect to θθθ0, as measured by f(θθθ0)−f(θ̂̂θ̂θ0), and the dispersion
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Figure 4: (a) Distribution of f(θθθ0) and f(θ̂̂θ̂θ0) for 100 replicas of patient

2. (b) Boxplot of the paired differences f(θθθ0) − f(θ̂̂θ̂θ0). (c–d)

Same representation as (a-b) for f(θ̂̂θ̂θ0) and continuous/discrete
time.

of the residuals introduced in the simulation process. The correlation turns out
to be moderate for this patient (r = 0.60). The effect of the residual at each time
ti was further investigated, by computing the correlation between f(θθθ0) − f(θ̂̂θ̂θ0)
and the squared residual value at time ti. Figure 5(b) shows a high correlation
between e2t5 and performance increase (r = 0.91), where higher e2t5 values are as-
sociated with higher performance improvement. Furthermore, note that the large
part of the residuals dispersion is due to the contribution of et5 . This analysis
corroborates that the observations do not contribute equally to the performance
increase. In this case, t5 corresponds to the time point with the largest residual
values for θθθ0 and highest derivate in the CD4 curve (Figures 3(b–c)).
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Figure 5: Dispersion diagram of f(θθθ0)−f(θ̂̂θ̂θ0) as a function of a)
∑n

i=1 e
2
ti

and b) e2t5 , the time that maximizes correlation between f(θθθ0)−
f(θ̂̂θ̂θ0) and ti, i = 1, 2, . . . , n. For the remaining time points the
absolute correlation was < 0.20. Each dot represents one of the
100 replicas for patient 2.

An overall comparison of the 100 replicas simulated for the 3 patients (in
a total of 300 replicas) is presented in Figure 6. As observed in Figure 6(a), the
distribution of f(θ̂̂θ̂θ0) is more shifted towards the small deviations than f(θθθ0) for
all patients such that f(θθθ0)−f(θ̂̂θ̂θ0) is positive for almost all replicas. Again, that
lower squared errors are achieved for θ̂̂θ̂θ0 for all patients. Moreover, as illustrated
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in Figure 6(b), the differences f(θθθ0) − f(θ̂̂θ̂θ0) are higher than those obtained by
choosing continuous/discrete time option on the model numerical resolution. This
suggests that differences between f(θθθ0) and f(θ̂̂θ̂θ0) are indeed relevant regardless
of the simulated patient.
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Figure 6: Boxplots of the paired differences (a) f(θθθ0) − f(θ̂̂θ̂θ0) (b) f(θ̂̂θ̂θ0)
and continuous/discrete time, for each patient.

Finally, the contribution of the different observations to the performance
increase is shown in Figure 7 for the 3 patients. Again, the results point out
that the correlation between f(θθθ0) − f(θ̂̂θ̂θ0) and the squared residual value at a
given time ti is highest for the time point with the largest residual values for θθθ0
and highest derivate in the CD4 curve. The maximum correlation between these
variables reach 0.86 for patient 1 and 0.90 for patient 3. For the remaining time
points, the absolute correlation is lower than 0.2 for all patients.
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Figure 7: Dispersion diagram of f(θθθ0)−f(θ̂̂θ̂θ0) as a function of the squared
error evaluated for the time that maximizes correlation between
these variables. Data for patient (a) 1, (b) 2 and (c) 3.

In this work, the methods were also applied to a real data set of CD4+T
cells count from six HIV patients [12]. The patients involved in the trial were
chosen according to some conditions, namely being infected either by HIV-1 or
HIV-2 type virus, being naive of any treatment at the beginning of the trial, not
having hepatitis B or C virus co-infections during the 6 months before the inclu-
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sion into the trial and having started an antiretroviral treatment at the beginning
of the trial (therefore, we considered ε > 0 in equation 2.1). The follow-up of the
CD4+T cells data for all patients can be found in the study of Rivadeneira et
al. [12]. Table 3 presents the follow-up of Patient 6.

Day 0 1 2 4 11 21 31 44 59 74 92 199

CD4 405 403 480 522 510 436 479 661 615 445 686 716

Table 3: CD4+T cells count ( cells
mm3 ) per time of observation (days) for

Patient 6 [12]. The data for the remaining patients used in this
work correspond to Patients 1, 2, 3, 4 and 8 and can be obtained
in the paper of Rivadeneira and colleagues [12].

Since these patients start an antiretroviral treatment at the beginning of
the trial, it is necessary to estimate the time of the infection. To this end, we
start the optimization from the minimum value of ĈD4(ti) = T (ti)+T

∗(ti), where

ĈD4(ti) is the estimate of CD4(ti) provided by the mathematical model (2.1) at
time ti, i = 1, 2, . . . , n. Moreover, we also need to estimate the initial value T0 for
that specific patient. This can be done by estimating additionally the parameter
T0 (besides the vector of parameters θ̂̂θ̂θ) with lower and upper bounds given by
lb = 100 and ub = 1200000, respectively [3].

Figure 8(a) shows the estimated trajectory for Patient 6, with units’ cells
ml

( cells
mm3 = cells

ml ×103), obtained from the optimal estimates θ̂̂θ̂θ6 = (0.013, 0.908, 3.2×
10−9, 0.693, 9999.999, 2.390) and initial number of uninfected cells T̂ 6

0 = 787728
cells
ml . The results indicate that the effectiveness of therapy is approximately

91% (ε̂6 = 0.908) and that the infected cells die at a rate of 0.693 per day
(δ̂6 = 0.693). Also, the analysis of the curve suggests that Patient 6 was infected
around 68 days before being included in the trial (t = 0). Figure 8 (b) resumes
the results obtained for Patients 1, 2, 3, 4 and 8 [12] and illustrates the inter-
subject variability of HIV individual patterns before and during antiretroviral
treatment. The effectiveness of therapy ε̂ is above 90% for all patients whereas
the daily death rate of infected cells δ̂ varies between 0.24 and 0.69. The analysis
of the curves provides an estimate time of infection of approximately 28 days for
Patient 2, 49 days for Patients 4 and 8 and 55 days for the remaining patients.
Finally, T̂0 varies between 237902 (Patient 3) and 980902 (Patient 2). In all
cases, f(θ̂̂θ̂θ) varies between 0.001 × 107 and 0.021 × 107 which is lower than that
observed in the simulated data. Such result is expected because in real data
there are no points of very large residuals like in the simulation condition (e.g.
t5 or t6 in the simulation condition, depending of the patient). Therefore, the
results suggest that methods’ performance in real data is not worse than that in
simulated replicas of the same patient. This is an important result because the
simulated data is drawn from the mathematical model, on the contrary of the
real data, and thus good performances in terms of goodness-of-fit are expected for
the curves estimated from the simulated data. Note that the order of magnitude
of Figure 8 is different from that of Figure 2, since CD4 values vary between 100
and 1200000 [3]. Thus, we conclude that the patients of the simulation are worse
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off than the patients in the study of Rivadeneira et al. [12].
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Figure 8: (a) CD4(t) trajectory over time for Patient 6 with the θ̂̂θ̂θ6 pa-
rameters. The circles represent the observations for Patient 6
in Table 3. (b) Same representation for Patients 1, 2, 3, 4 and
8 [12].

5. CONCLUSION

This work addresses the problem of estimating the parameters of a HIV
dynamic model from a set of observations. Our method considers the minimiza-
tion of the square error between model estimates and observed CD4 values, with
a restriction that guarantees that the optimal solution θ̂̂θ̂θ0 verifies equal contribu-
tion of negative and positive deviations from observations. Furthermore, the θ̂̂θ̂θ0
estimates are restricted to lower and upper physiological bounds, which allows
us to obtain a fully automatic method, in which it is not necessary to introduce
an initial condition. The proposed method is validated via a data simulated with
reference parameters θθθ0 to mimic 3 different patients. The results indicate that
the replacement of θθθ0 by θ̂̂θ̂θ0 decreases the fit error in a value that is greater than
the difference between the fit errors obtained in the continuous and in the discrete
options on the model numerical resolution. Therefore, the performance increase
when replacing θθθ0 by θ̂̂θ̂θ0 is numerically relevant. Finally, the algorithm provides
adequate θ̂̂θ̂θ0 estimates (i.e. with low fit error to simulated and to real data), which
enables a proper characterization of the temporal trajectory of a HIV patient.
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Abstract:

• The identification of the right methodology to perform binary classification based
on an observed quantitative variable is usually a complex choice. Thus, the use of
appropriate accuracy measures is crucial. In fact, the ROC curve reveals a lot of
information about the accuracy of the applied methodology for all the possible values
of the cut-point. In particular, the integral and partial areas under the ROC curve
are widely used. The φ index, in which sensitivity equals specificity, may also be
applied. Nevertheless, the accuracy at one specific cut-point may be sufficient to
assess the accuracy in some applications. Therefore, different ways to define the
optimal cut-point may be applied, such as the maximization of the Youden index,
the maximization of the concordance probability or the minimization of the distance
to the point with absence of misclassification. To compare the adequacy of these
measures, a simulation study was performed under different scenarios. The results
highlight the advantages and disadvantages of each procedure and advise the use of
the φ index.
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1. INTRODUCTION

Assume that an infection with prevalence rate p is affecting a population
with N individuals. Let Xi, with i = 1, · · · , N , be N independent Bernoulli
trials (Xi ∼ Ber(p)) with probability p, where the random variable (r.v.) Xi

denotes the presence (Xi = 1) or the absence (Xi = 0) of the infection in the i-th
individual. In addition, let Yi represents the value of a diagnostic test performed
by the i-th individual, characterized by the distribution D0 with parameter vector
θ0 if Xi = 0 and by the distribution D1 with parameter vector θ1 if Xi = 1, for
i = 1, . . . , N . Finally, let t be the cut-point of the binary classification (healthy
versus infected) based on the observation of the r.v. Yi. Under these conditions
we can define the following classification rule:

• If Yi ≤ t⇒ X−
i (a negative result, i.e. the individual is classified as healthy);

• If Yi > t⇒ X+
i (a positive result, i.e. the individual is classified as infected).

As a matter of fact, the opposite inequalities can also be applied. Nevertheless,
the reasoning is exactly the same and, therefore, we will restrict this presentation
to the previously described situation.

The intention is to perform a diagnostic test to achieve a binary classifica-
tion (e.g. healthy versus infected) based on the observed value of the quantitative
variable Yi. Nonetheless, almost all tests may result in misclassification due the
occurrence of false negative or false positive results. Thus, it is essential to assess
the performance of the applied binary classification procedure. The most common
measure to evaluate the performance is the area under the Receiver Operating
Characteristic (ROC) curve (AUC) [32], but it evaluates all possible cut-points,
even those that are clinically unsuitable [7]. The partial AUC (pAUC) has been
attracting the attention in medical issues [1, 2, 10] as well as in decision making
and machine learning applications [16, 17] since it focus on a suitable range of in-
terest for the true positive (or negative) rate [14]. Nevertheless, the partial AUC
has some limitations in the application on ROC curves that cross the diagonal
line, which are quite frequent in practice. Thus, there are still some contraindi-
cations for its widespread, regardless of some new proposals to overcome this
problem (e.g., [30, 33]). And, to the best of our knowledge, there is no simulation
study that allows to identify the existence of regions in which the computation
of pAUC is suitable even in those cases. Moreover, despite its advantages over
AUC, the pAUC continues to be unknown to many who apply binary classifica-
tion procedures based on a quantitative variable. Hence, the main goal of this
paper is to compare the usual measures of accuracy in binary classification in
order to identify the most appropriate, completing the works already presented
in [26, 25].

The main accuracy measures for binary classification based on a quanti-
tative variable are presented in Section 2. In Section 3, a simulation study is
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performed in order to compare those measures under different scenarios. All re-
sults were computed by the software using different distributions as well as
diverse sample sizes. Finally, the main conclusions are outlined in Section 4.

2. DIAGNOSTIC ACCURACY MEASURES

The usual accuracy measures for classification can be computed for each
possible value for the cut-point t, namely the specificity ϕe (or true negative
fraction) that corresponds to the probability of obtaining a negative result in a
healthy individual, i.e.

P
(
X−
i |Xi = 0

)
= P (Yi ≤ t|Xi = 0) = FD0

(t),

where FD denotes the distribution function of the distribution D. Similarly, the
sensitivity ϕs (true positive fraction) corresponds to the probability of getting a
positive result in an infected individual, i.e.

P
(
X+
i |Xi = 1

)
= P (Yi > t|Xi = 1) = 1− FD1

(t) = FD1
(t),

where FD denotes the survival function of the distribution D.

Note that the probabilities ϕs and ϕe depend on the value t considered for
the cut-point and are inversely correlated, since increasing one of them implies
decreasing the other when the same classification test is performed. Figure 1
uses the densities of the healthy (distribution D0) and of the infected (distribu-
tion D1) individuals to emphasize the changes in the sensitivity and specificity
when different values for the cut-point are applied. The three graphs show the
decreasing sensitivity (shaded area represented on the right of the cut-point) and
the increasing specificity (shaded area represented on the left of the cut-point) as
the value of the cut-point increases.
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Figure 1: Sensitivity versus specificity on the use of different cut-points.
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2.1. The receiver operating characteristic (ROC) curve

The Receiver Operating Characteristic (ROC) curve allows to visualize
the evolution of ϕs and ϕe when the cut-point goes through all possible values,
from the point in which all individuals are classified as infected to the other
extreme where all individuals are classified as healthy. Therefore, this curve
reveals all pairs (1− ϕe , ϕs) which are also usually denoted by (x,ROC(x)). For
this reason, the ROC curve is often used to identify the optimal cut-point of
a binary classification methodology, as well as to compare the performance of
different methodologies [5, 6, 9, 15, 18, 32, 35]. The first graph of Figure 2
displays an example of a ROC curve.
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Figure 2: The ROC curve (top left) and the integral (top right) and partial
(bottom) areas under the curve.

All ROC curves start in the point (0, 0) where all individuals are classified as
healthy, and therefore ϕe = 1 and ϕs = 0; and finish on the opposite situation, i.e.
where all individuals are classified as infected, ϕe = 0 and ϕs = 1. The segment
1−ϕe = ϕs connecting these two points represents a random classification without
using the information of Yi, where the probability of classifying any individual as
infected is equal to ϕs . Note that the accuracy in any point below this segment
would increase if the classification of all individuals were simply changed. The
other two vertices of the ROC plane correspond to the remaining extreme cases,
the ideal point (0, 1) with absence of misclassification ϕe = ϕs = 1; and the point
(1, 0) in which every individual is misclassified ϕe = ϕs = 0.
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2.1.1. The entire area under the ROC curve — AUC

The most widely used measure of accuracy is the area under the ROC curve
(AUC). The second graph of Figure 2 shows the integral area under the ROC
curve. It represents the mean value of ϕs for all possible values of ϕe . It can also
be interpreted as the probability of correctly classifying a pair when the r.v. Yi
is continuous, where 0.5 means unreliability, as in a random classification, and 1
corresponds to the perfect classification (absence of misclassification). The value
of the area is also related to the Wilcoxon-Mann-Whitney statistic, allowing to
make inference about the ROC curve [18, 35]. The AUC is possibly the most com-
monly used measure to assess the diagnostic accuracy of a binary classification
methodology [6, 18, 32]. However, this measure takes into account all possible
values for the cut-point, even those that are unsuitable in practice because it gen-
erates very low specificity or sensitivity levels. This is the main drawback of this
measure, although it summarizes the entire ROC curve it includes values which
are not clinically relevant. In fact, these values should be neglected, otherwise
they may interfere in the choice of the best methodology. Moreover, usually only
a specific cut-point is applied.

2.1.2. The standardized partial area under the ROC curve — spAUC

The partial area under the ROC curve (pAUC) can be used to evaluate
the performance at the interest cut-point values, for which the methodology per-
forms satisfactorily [3, 8, 14, 13, 31, 35]. These values usually correspond to high
specificity values, but can also be applied to high sensitivity values. The pAUC
over the high specificity range [1− x1, 1− x0] can be defined as

pAUC(x0, x1) =

∫ x1

x0

ROC(x) dx,

which corresponds to the area of the shaded region in the bottom left chart of
Figure 2. It analyses the ϕs when we fix the ϕe in a range of interest. However,
in some applications the goal is to evaluate the ϕe when the ϕs is significant. In
this cases the area is on the right of the ROC curve (see bottom right graph of
Figure 2). Thus, we can compute the pAUC over the high sensitive range [y0, y1]
using

pAUC(y0, y1) =

∫ y1

y0

1− ROC−1(y) dy,

where ROC−1 denotes the generalized inverse function of the function ROC. The
pAUC(y0, y1) corresponds to the area of the shaded region in the fourth chart of
Figure 2. This latter case does not correspond properly to the area below the
curve and perhaps the most appropriate designation would be the area on the
right of the curve instead of the area under the curve.
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In both cases, the pAUC verifies pAUC(0, 1) = AUC and

1

2

(
x21 − x20

)
≤ pAUC(x0, x1) ≤ x1 − x0, 0 ≤ x0 ≤ x1 ≤ 1.

Hence, in order to be interpreted analogously to AUC, pAUC can be standardized
by

spAUC(x0, x1) =
1

2

(
1 +

pAUC(x0, x1)− 1
2

(
x21 − x20

)
x1 − x0 − 1

2

(
x21 − x20

) )
.

Thus, spAUC varies between 0.5 (random classification) and 1 (absence of mis-
classification). Nevertheless, the use of pAUC or spAUC requires the definition of
the range of interest [x0, x1] or [y0, y1]. Usually [x0, x1] corresponds to [0, x1], i.e.
the highest values for specificity, and spAUC can be seen as (approximately) the
average of ϕs when specificity ranges in [1 − x1, 1]. Similarly, [y0, y1] commonly
corresponds to the highest values for the sensitivity, i.e. [y0, 1], and spAUC can
be seen as (approximately) the average of ϕe when sensitivity ranges in [y0, 1].

Note that the use of spAUC introduces some difficulties to solve issues
related to the arbitrariness of choosing the range of interest. Furthermore, some
authors highlight the loss of information, claiming a loss of statistical precision
as compared with inferences based on the entire AUC [7, 35].

2.2. The φ index

The use of the probability φ, which verifies ϕs = ϕe = φ for some cut-point,
to measure the performance of diagnostic tests in the context of compound tests
is advised in [23, 24]. In fact, it corresponds to the intersection of the ROC curve
with the straight line ϕs = ϕe , as Figure 3 illustrates. If this value does not exist,
as in the use of count distributions or small samples, the distance between ϕs

and ϕe shall be minimized and φ = ϕs+ϕe
2 .

ROC − Receiver Operating Characteristics

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
3.

61
−

1.
7

0.
21

2.
11

4.
02

5.
93

ROC − Receiver Operating Characteristics

1 − Specificity

S
en

si
tiv

ity

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

−
1.

84
−

0.
65

0.
53

1.
72

2.
9

4.
09

Figure 3: The φ index.

In the simulations performed in Section 3, computations of spAUC over
the range [φ−0.05,min{φ+ 0.05, 1}] for both specificity and sensitivity are used.
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The idea was to consider not only significant values for both measures but also
to use a small range (the largest range is equal to 0.1).

2.3. The optimal cut-point

In practical issues only a single cut-point is usually applied. Thus, the
knowledge of the accuracy at this specific point may be sufficient to assess the
classification methodology. Therefore, the selection of the optimal cut-point is a
complex decision that depends on several factors. For example, the severity of
the infection and the risk of not diagnosing the infection may clearly encourage
the choice of a high sensitivity and somehow neglect the specificity level. In the
opposite direction, the side effects of the treatment and the treatment cost may
favour the use of a high specificity and disregard the sensitivity level. Hence,
it may be important to decide between sensitivity or specificity in the selection
of the cut-point, because its determination implies a compromise between these
two measures. Nonetheless, in the absence of clinical factors that lead to the
choice of one of these measures over the other, some criterion of optimization can
be applied to choose the optimal cut-point. In fact, there are several available
methodologies in the literature to obtain the optimal cut-point value [4, 11, 19,
22, 29, 34, 36], such as the maximization of the Youden index, the minimization of
the distance to the point with absence of misclassification and the maximization
of the concordance probability.

2.3.1. The Youden index — YI

One way of determining the cut-point is to choose the point that maximizes
the Youden index (YI) defined by [4, 11, 20, 27, 34]

YI = ϕe + ϕs − 1 = FD0
(t)− FD1

(t).

Geometrically, it corresponds to the point on the ROC curve in which the vertical
distance is greater from the line 1 − ϕe = ϕs , i.e. the difference between ϕs and
1 − ϕe , as the first chart of Figure 4 shows. It also corresponds to the point t
which maximizes the sum ϕe + ϕs and, thus, maximizes the distance between
FD0

(t) (true positive rate) and FD1
(t) (false positive rate).

2.3.2. The closest-to-(0, 1) criteria — DI

As previously stated, the point (0, 1) corresponds to the perfect classifica-
tion procedure where all individuals are well classified. Therefore, we intend to
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be as close as possible to this situation. Hence, the minimization of the Euclidean
distance to the ideal point (0, 1), with ϕe = ϕs = 1, is another criteria to choose
the best cut-point [11, 19, 27, 29], i.e. minimizing

D =

√
(1− ϕe)

2 + (1− ϕs)
2 =

√
F

2

D0
(t) + F 2

D1
(t).

The second chart of Figure 4 illustrates this procedure. However, in order to
compare with the other measures, in the simulations performed in Section 3 it
will be used the maximization of

DI = 1−D = 1−
√
F

2

D0
(t) + F 2

D1
(t),

which corresponds to the minimization of D and provides the point on the ROC
curve that is the closest to the ideal case (0, 1). With this transformation all the
measures to select the cut-point take values in the range [0, 1] and increase with
the improvement of the accuracy of classification.

2.3.3. The concordance probability method — CP

When the r.v. Yi is continuous, the AUC can be interpreted as the concor-
dance probability. But, when Yi is not continuous (discrete or ordinal) [11, 12]
advocate the use of the concordance probability for a quantitative variable given
by the product of sensitivity and specificity, i.e.

CP = ϕe ϕs = FD0
(t)FD1

(t).

The maximization of the CP can be used to define the cut-point. The third chart
of Figure 4 shows the area of the rectangle which corresponds to the CP value.
Thus, covering all the points on the ROC curve as the upper left vertex of the
rectangle, we intend to determine the rectangle with maximum area.
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Figure 4: The optimal cut-point using the Youden index (left), the dis-
tance to the ideal point (center) and the concordance probability
(right).
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3. AN ACCURACY COMPARISON BY SIMULATION

In most cases, the focus in the application of a diagnostic test is the eval-
uation of the accuracy for a single cut-point, which shall be the best one for our
purposes. Thus, it is indeed critical to compare the differences between the area
AUC and the partial area spAUC under the ROC curve as well as the index φ,
and to realize if a greater value in these accuracy measures is sufficient to ensure
a good accuracy in the selected cut-point, considering the cut-points obtained by
the application of the three procedures provided in Subsection 2.3.

Hence, a simulation study was performed through the software using the
ROCR and pROC packages [21, 28]. All scenarios were analysed using 103 replicas
and the following accuracy measures were computed:

• AUC – the entire area under the ROC curve;

• SP90, SP75, SP50 – spAUC computed over the specificity range [0.9, 1],
[0.75, 1] and [0.5, 1], respectively;

• SE90, SE75, SE50 – spAUC computed over the sensitivity range [0.9, 1],
[0.75, 1] and [0.5, 1], respectively;

• φ (or Phi) – the φ index;

• SPφ (or SPPhi) – spAUC computed over the specificity range
[φ− 0.05,min{φ+ 0.05, 1}];

• SEφ (or SEPhi) – spAUC computed over the sensitivity range
[φ− 0.05,min{φ+ 0.05, 1}];

• YI – the maximum Youden index;

• DI – the maximum of 1-D where D denotes the distance to the ideal point
(0, 1);

• CP – the maximum of the concordance probability.

In order to compare the obtained results in these measures, the Spearman’s
rank correlation coefficients were computed to assess monotonic relationships
between them. Therefore, these correlations evaluate if the rank of the accuracy
in each model is made in the same way using different measures. Note that all
those measures vary in [0, 1] and increase with the improvement of the accuracy.

For the test design, diverse sample sizes were applied using equal number
of infected and healthy individuals, i.e. n0 = n1 = n ∈ {50, 100, 250, 500, 1000}.
The restriction n0 = n1 only aims to achieve the same accuracy in the estimation
of the sensitivity (only infected individuals are analysed) and specificity (only
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healthy individuals are used). Besides, different distributions for the characteri-
zation of the infected and healthy individuals were considered in the simulations,
both discrete and continuous. In order to simplify the presentation of the ob-
tained results, we will restrict to the cases where the two subpopulations have the
same distribution D0 = D1 but with different values for the parameter vectors, i.e.
θ0 6= θ1. This restriction aims to simplify the interpretation of the results. More-
over, to minimize and simplify the discussion of the main conclusions, only the
results obtained with some of the most applied distributions will be shown since
they include the most usual shapes of ROC curves. In particular, the following
distributions were used:

• Normal, with µ0 = 0, σ0 = 1, µ1 = 2 and σ1 ∈ {2/3, 1, 1.5, 2, 3};

• Gamma, with α0 = 2, β0 = 1, α1 ∈ {6, 9, 12} and β1 ∈ {1, 3};

• Binomial, with p0 = 0.25 and p1 ∈ {0.3, 0.4, 0.5};

• Geometric, with p0 = 0.2 and p1 ∈ {0.1, 0.02}.

The main goal is to evaluate the association between those accuracy mea-
sures and, therefore, to assess whether those measures are able to evaluate the
same criterion of accuracy.

3.1. The sample dimension

Let us consider that the r.v. Yi has Normal distribution with standard
deviation σ = 1 and mean µ0 = 0 in a healthy individual and µ1 = 2 in an
infected individual. Figure 5 contains the boxplot for different sample sizes n ∈
{50, 100, 250, 500, 1000} of the applied diagnostic accuracy measures which do
not depend on the cut-off value. As expected, the median seems to be always
the same, but the range of variation and the interquartile range decrease with
the increasing of the sample size. Besides, due to the symmetry of the ROC
curves around the line ϕe = ϕs , the partial areas over the specificity have the
same behaviour as the partial areas over the sensitivity, converging to the AUC
when the range of interest increases. In the last chart some ROC curves obtained
with different sample sizes are plotted to illustrate that the ROC curve becomes
smoother as n increases.

Table 1 provides the Spearman’s rank correlation coefficients between all
the computed measures when the sample dimension is n = 1000 (upper triangular
matrix) and when the sample dimension is n = 50 (lower triangular matrix). The
results do not seem to have significant differences between the values obtained
with n = 50 and n = 1000. The correlation between the partial areas and the
entire area seems to increase when the interval of interest increases and converges
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Figure 5: D0(θ0) = N(0, 1) versus D1(θ1) = N(2, 1) with different sample
dimensions: n = 1000 (top left), n = 500 (top middle), n = 250
(top right), n = 100 (bottom left), n = 50 (bottom middle), and
ROC curves (bottom right).

to all of the support [0, 1] as expected. The partial areas SPφ and SEφ exhibit
significant correlation with AUC albeit having lower range in its computation.
Moreover, the φ index clearly reveals higher correlation with the measures YI,
DI and CP used to set the best cut-point. Besides, the measures YI, DI and CP
are strongly correlated with each other.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .784 .784 .928 .927 .988 .988 .815 .869 .864 .841 .828 .837
SP90 .791 1 .326 .912 .515 .818 .713 .550 .628 .575 .571 .560 .567
SE90 .780 .329 1 .516 .910 .712 .817 .561 .584 .628 .585 .572 .581
SP75 .935 .912 .531 1 .758 .959 .893 .810 .874 .841 .834 .823 .830
SE75 .925 .525 .915 .766 1 .892 .957 .818 .848 .872 .844 .831 .840
SP50 .991 .818 .718 .960 .896 1 .972 .831 .890 .880 .857 .844 .852
SE50 .989 .722 .817 .902 .957 .975 1 .834 .885 .885 .862 .848 .858
φ .823 .558 .592 .811 .830 .838 .842 1 .894 .890 .958 .977 .965
SPφ .866 .668 .576 .870 .816 .884 .876 .810 1 .981 .948 .931 .944
SEφ .862 .559 .690 .807 .881 .869 .885 .818 .882 1 .944 .927 .940
YI .884 .634 .654 .865 .877 .896 .902 .913 .887 .890 1 .987 .998
DI .863 .594 .629 .848 .868 .877 .884 .957 .888 .894 .975 1 .993
CP .878 .619 .646 .860 .876 .891 .897 .937 .887 .891 .994 .989 1

Table 1: Spearman’s rank correlation coefficient, with n = 1000 (upper
triangular matrix) versus n = 50 (lower triangular matrix).
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3.2. Normal distribution with different standard deviation

Let us now consider that the r.v. Yi has Normal distribution with standard
deviation σ0 = 1 and mean µ0 = 0 in a healthy individual and µ1 = 2 in an
infected individual. The standard deviation in an infected individual varies in
σ1 ∈ {2/3, 1, 1.5, 2, 3} and we are collecting samples with size n = 1000. Ob-
viously, the accuracy will get worse with the increase of σ1. For σ1 ∈ {2/3, 1}
the partial areas over the sensitivity are similar to the partial areas over the
specificity (see Figure 6). Nevertheless, for σ1 ∈ {1.5, 2} the boxplots are quite
different and for σ1 = 3 the boxplot of SE90 is not even shown. Hence, this case
reveals problems on the computation of the partial area over a range of high sen-
sitivity. If we observe the last chart of Figure 6, for the worst plotted ROC curve
the spAUC computed over the sensitivity range [0.9, 1] would be lower (even after
standardization) than 0.5 and, therefore, it is even worse than the random clas-
sification. Consequently, this measure is not shown. Note, also, that the worst
ROC curves are not symmetric around ϕe = ϕs and consequently the partial ar-
eas over the specificity have different behaviour comparing with the partial areas
over the sensitivity. However, the partial areas over a neighbourhood of φ do not
seem to have any problems in assessing accuracy.
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Figure 6: D0(θ0) = N(0, 1) versus D1(θ1) = N(2, 2/3) (top left), N(2, 1)
(top middle), N(2, 1.5) (top right), N(2, 2) (bottom left), N(2, 3)
(bottom middle), and ROC curves (bottom right), with n =
1000.

Table 2 displays the Spearman’s rank correlation coefficients between all
the computed measures when the r.v. Yi is characterized by N(0, 1) for a healthy
individual and characterized by N(2, 2/3) (upper triangular matrix) and N(2, 2)
(lower triangular matrix) for an infected individual. There seems to be some
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differences between the results obtained in these two situations, but the main
conclusions appear to be the same. The correlation between the partial areas
and the entire area continues to increase when the interval of interest increases
to the support [0, 1] and the φ index continues to reveal quite strong correlations
with the measures YI, DI and CP. Even though, when σ1 = 2 these correlations
are lower.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .890 .876 .969 .970 .997 .997 .771 .616 .599 .798 .786 .796
SP90 .690 1 .597 .953 .801 .904 .878 .736 715. .402 .703 .751 .761
SE90 .721 .289 1 .779 .942 .860 .888 .753 .359 .656 .776 .767 .775
SP75 .847 .906 .392 1 .919 .980 .963 .794 .673 .578 .824 .811 .823
SE75 .952 .484 .825 .655 1 .963 .980 .807 .573 .637 .835 .823 .833
SP50 .947 .793 .505 .945 .821 1 .993 .777 .629 .604 .805 .793 .803
SE50 .998 .659 .730 .830 .960 .939 1 .780 .616 .605 .807 .795 .805
φ .857 .579 .451 .815 .765 .909 .861 1 .286 .282 .959 .979 .963
SPφ .885 .603 .473 .842 .790 .936 .888 .982 1 .595 .403 .354 .394
SEφ .896 .606 .510 .813 .822 .924 .898 .843 .911 1 .405 .354 .396
YI .793 .821 .367 .947 .608 .887 .783 .757 .785 .770 1 .990 .999
DI .849 .656 .432 .897 .711 .919 .849 .908 .934 .886 .859 1 .992
CP .825 .735 .397 .935 .657 .909 .820 .831 .859 .835 .949 .942 1

Table 2: Spearman’s rank correlation coefficient, with n = 1000, N(0, 1)
versus N(2, 2/3) (upper triangular matrix) and N(2, 2) (lower
triangular matrix).

3.3. Gamma distribution

Figure 7 and Table 3 show the results when the r.v. Yi has Gamma dis-
tribution with α0 = 2, β0 = 1 for a healthy individual, and α1 ∈ {6, 9, 12} and
β1 ∈ {1, 3} for an infected individual. The boxplots of the partial areas SP90

and SP75 relative to D1(θ1) = Gamma(6, 3) are not shown in Figure 7. It reveals
problems on the computation of the partial area over a range of high specificity.
If we observe the graph with the ROC curves, the curve with the worst perfor-
mance is below the line of random classification in the high specificity values.
Thus, the standardized partial area under the ROC curve would be lower than
0.5 (accuracy worse than in random classification). As in previous case, some of
the ROC curves are not symmetric around ϕe = ϕs and, therefore, the partial
areas over the specificity are quite different from the partial areas over the sen-
sitivity. Moreover, the partial areas over a neighbourhood of φ seem to continue
to assess accuracy without revealing any problem, regardless of whether they are
being computed over the sensitivity or over the specificity.
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Figure 7: D0(θ0) = Gamma(2, 1) versus D1(θ1) = Gamma(6, 1) (top
left), Gamma(9, 1) (top middle), Gamma(12, 1) (top right),
Gamma(6, 3) (bottom left), Gamma(9, 3) (bottom middle), and
ROC curves (bottom right), with n = 1000.

Table 3 displays the Spearman’s rank correlation coefficients between all
the computed measures when the r.v. Yi is characterized by Gamma(2, 1) for a
healthy individual and characterized by Gamma(12, 1) (upper triangular matrix)
and Gamma(9, 3) (lower triangular matrix) for an infected individual. In the
Gamma(12, 1) case, the AUC and the different spAUC are strongly correlated,
but the rank correlations between AUC or any of the spAUC and the measures
YI, DI and CP are not that significant. In fact, the index φ is the only accuracy
measure that revels strong correlations with these indexes to select the optimal
cut-point, albeit these correlations are not so significant in the Gamma(9, 3) case.

3.4. Discrete distributions

In these last scenarios, two count distributions are analysed, the Binomial
with n trials and success probability p (B(n, p)) and the Geometric distribution
with probability p (G(p)). Hence, in the first scenario let the r.v. Yi have B(20, p)
with p0 = 0.25 for a healthy individual and p1 ∈ {0.5, 0.4, 0.3} for an infected
individual. In the second scenario, the r.v. Yi is characterized by G(p) where
p0 = 0.2 for a healthy individual and p1 ∈ {0.1, 0.02} for an infected individual.
The results in both scenarios do not reveal any problem in the calculation of any
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AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .994 .858 1.000 .966 1.000 .997 .638 .979 .802 .654 .656 .655
SP90 .592 1 .836 .995 .956 .994 .990 .639 .990 .772 .652 .656 .653
SE90 .657 .183 1 .856 .933 .858 .870 .811 .770 .984 .832 .830 .833
SP75 .875 .778 .335 1 .965 1.000 .997 .639 .981 .800 .655 .657 .656
SE75 .809 .250 .910 .465 1 .966 .975 .709 .923 .881 .727 .727 .728
SP50 .993 .619 .571 .905 .751 1 .997 .638 .979 .802 .654 .656 .655
SE50 .934 .357 .784 .660 .935 .904 1 .648 .974 .814 .666 .666 .667
φ .859 .351 .540 .650 .736 .859 .892 1 .545 .794 .924 .958 .936
SPφ .899 .380 .552 .707 .759 .900 .916 .867 1 .697 .566 .566 .566
SEφ .886 .359 .558 .671 .761 .886 .920 .979 .935 1 .832 .822 .831
YI .769 .230 .790 .442 .947 .730 .890 .709 .733 .733 1 .981 .998
DI .849 .311 .627 .578 .860 .837 .925 .878 .901 .909 .841 1 .989
CP .821 .276 .693 .518 .916 .798 .921 .800 .833 .829 .927 .948 1

Table 3: Spearman’s rank correlation coefficient, with n = 1000,
Gamma(2, 1) versus Gamma(12, 1) (upper triangular matrix)
and Gamma(9, 3) (lower triangular matrix).

of the spAUC, despite some of the ROC curves being asymmetric around the
line ϕe = ϕs . Thus, in some cases the partial areas over the specificity assume
different values when compared with the partial areas over the sensitivity, but all
measures were computed in the analysed cases.
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Table 4 shows the Spearman’s rank correlation coefficients between all the
computed measures when the r.v. Yi is characterized by B(20, 0.25) for a healthy
individual and by B(20, 0.5) for an infected individual (upper triangular matrix),
and Geometric(0.2) for a healthy individual versus Geometric(0.1) for an infected
individual (lower triangular matrix). The results using count distributions appear
to be similar to those previously obtained with the use of continuous distributions.
Thus, the φ index continues to present very significant correlations with the
measures YI, DI and CP, higher in the Binomial case than in the Geometric
case.

AUC SP90 SE90 SP75 SE75 SP50 SE50 φ SPφ SEφ YI DI CP

AUC 1 .822 .837 .941 .954 .991 .994 .798 .905 .870 .799 .799 .798
SP90 .571 1 .410 .934 .641 .851 .783 .703 .799 .599 .704 .672 .699
SE90 .598 .126 1 .628 .928 .791 .860 .562 .670 .810 .563 .576 .566
SP75 .786 .860 .235 1 .839 .966 .923 .853 .942 .830 .854 .834 .851
SE75 .786 .203 .885 .352 1 .934 .973 .801 .886 .916 .801 .802 .802
SP50 .936 .689 .351 .909 .533 1 .983 .823 .929 .881 .823 .812 .822
SE50 .955 .357 .687 .582 .883 .816 1 .810 .915 .889 .811 .803 .810
φ .818 .318 .375 .556 .564 .806 .830 1 .920 .804 1.00 .990 1.00
SPφ .893 .397 .387 .641 .596 .892 .889 .924 1 .910 .921 .897 .918
SEφ .888 .414 .378 .649 .589 .890 .877 .847 .983 1 .805 .801 .805
YI .854 .541 .310 .844 .462 .933 .745 .744 .829 .829 1 .990 1.00
DI .862 .405 .344 .668 .532 .891 .835 .881 .960 .952 .869 1 .993
CP .865 .422 .339 .697 .522 .904 .827 .863 .947 .941 .901 .990 1

Table 4: Spearman’s rank correlation coefficient, with n = 1000,
B(20, 0.25) versus B(20, 0.5) (upper triangular matrix) and
Geometric(0.2) versus Geometric(0.1) (lower triangular matrix).

3.5. Sensitivity and specificity on the optimal cut-point

The first quartile q1 and the third quartile q3 of the sensitivity ϕs and of
the specificity ϕe on the cut-points selected by the application of the YI, DI and
CP criteria are displayed on Table 5. It is also shown q1 and q3 of the φ index, in
which ϕs = ϕe or, at least, its distance is minimized and φ = ϕs+ϕe

2 . The results
clearly stand out the diverge accuracy levels obtained when the cut-points are
set by YI, DI, and CP. Moreover, the results suggest that these differences
may occur in any sense, i.e. none of these measures gives priority to sensitivity
or to specificity in relation to the others measures. For example, the cut-point
selected by the YI generates better sensitivity (consequently worse specificity) in
the cases Gamma( . , 3) but generates worse sensitivity (and better specificity)
in the N(2, 1.5) or G(0.10) cases. On the other hand, the cut-point selected by
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the DI criterion generates better sensitivity (consequently worse specificity) in
the cases N(2, . ) but generates worse sensitivity (and better specificity) in the
Gamma( . , 3) cases. Therefore, the accuracy of the cut-points selected through
theses procedures must be evaluated and compared in each application.

Let us also point out that the φ index can also be used to select the cut-
point in any application, as the results displayed in Table 5 prove. In this case
the balance between sensitivity and specificity is a priority (these measures are
the same, or at least very close), with a clear reduction in the variation of these
measurements (as we can ascertain by comparing the interquartile range).

YI DI CP φ
ϕs ϕe ϕs ϕe ϕs ϕe ϕs = ϕe

q1 q3 q1 q3 q1 q3 q1 q3 q1 q3 q1 q3 q1 q3

n=50 .800 .900 .840 .920 .820 .885 .840 .900 .820 .900 .840 .905 .820 .860
n=100 .810 .890 .840 .910 .830 .880 .830 .880 .820 .890 .830 .890 .820 .860
n=250 .816 .876 .828 .888 .832 .864 .832 .868 .828 .872 .828 .876 .828 .852
n=500 .822 .868 .828 .874 .834 .860 .834 .860 .830 .866 .828 .866 .834 .850
n=1000 .825 .861 .829 .865 .833 .855 .834 .855 .830 .860 .830 .860 .835 .846
N(2, 2/3) .927 .944 .928 .946 .931 .942 .929 .941 .929 .944 .927 .944 .930 .937
N(2, 1.5) .710 .751 .849 .887 .758 .782 .808 .836 .733 .768 .829 .865 .782 .794
N(2, 2) .631 .672 .880 .914 .701 .725 .803 .833 .667 .700 .843 .879 .740 .755
N(2, 3) .554 .587 .923 .949 .631 .655 .810 .843 .592 .621 .875 .910 .684 .699
Ga(6, 1) .869 .898 .832 .864 .864 .882 .847 .866 .869 .895 .835 .864 .856 .866
Ga(9, 1) .952 .967 .937 .952 .950 .961 .942 .953 .953 .966 .938 .952 .946 .952
Ga(12, 1) .982 .989 .977 .985 .982 .987 .979 .984 .982 .989 .977 .984 .979 .983
Ga(6, 3) .854 .906 .283 .338 .642 .693 .454 .489 .668 .726 .434 .474 .533 .547
Ga(9, 3) .852 .894 .555 .601 .756 .792 .641 .668 .797 .840 .608 .642 .689 .701
Ga(12, 3) .889 .922 .718 .755 .840 .867 .766 .787 .875 .905 .736 .766 .795 .808
B(50, .5) .861 .877 .892 .904 .861 .876 .892 .904 .861 .876 .892 .904 .861 .876
B(50, .4) .741 .759 .778 .795 .741 .759 .778 .795 .741 .759 .778 .795 .741 .759
B(50, .3) .571 .597 .606 .631 .572 .593 .606 .627 .572 .593 .606 .627 .572 .593
G(.10) .470 .546 .733 .802 .581 .606 .658 .683 .570 .602 .663 .696 .608 .655
G(.02) .774 .804 .918 .943 .815 .833 .875 .898 .787 .813 .906 .932 .839 .852

Table 5: First and third quartiles of sensitivity and specificity on the
optimal cut-point.

4. CONCLUSION — FINAL REMARKS

In most situations AUC, spAUC and φ are strongly correlated and, there-
fore, seem to be able to evaluate the same criterion of accuracy. Neverthe-
less, AUC shows less variability than spAUC, mainly on small samples and in
cases with worse accuracy. Moreover, spAUC with sensitivity or specificity over
[φ − 0.05,min{φ + 0.05, 1}] shows less variability than over [0.9, 1], [0.75, 1] or
even [0.5, 1], albeit assessing a smaller range. In some cases, it is not possible
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to compute the spAUC over a range of sensitivity using the Normal distribu-
tion and over a range of specificity using the Gamma distribution. Actually, in
some situations the spAUC seems to provide better results when computed over
a range of specificity (rather than sensitivity), but the opposite may also occur
in other cases. However, the partial areas computed over a neighbourhood of
φ do not seem to have any problem in assessing accuracy even when the ROC
curve crosses the diagonal line and, therefore, it enables to overcome the main
drawback usually identified in the application of the spAUC. Furthermore, the
φ index has higher correlation with YI, DI, CP than AUC or any of the com-
puted spAUC. In fact, the φ index seems to be the measure with higher rank
correlation with the sensitivity and specificity of the optimal cut-point selected
by the use of any of the analysed optimization criteria. Additionally, this index
can also be applied to select the optimal cut-point, ensuring a balance between
sensitivity and specificity. Accordingly, this index seems to perform better in the
evaluation of the most appropriate model as well as in the selection of the optimal
cut-point. Finally, it is equally important to point out that the cut-points set by
YI, DI, and CP can, in some cases, be quite different and generate significantly
distinct accuracy measures. Hence, in each application their performances should
be evaluated and the selected cut-points compared.

In fact, the variability of the diagnostic accuracy measures in simulations
under the same scenario is quite high and, therefore, the obtained estimates
do not always reveal the true accuracy of the applied classification procedure.
Hence, new estimation techniques for these measures (or other measures) must
be investigated in order to minimize this variability and to achieve more robust
estimates, for example applying bootstrap or other resampling techniques.
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Abstract:

• Joint modelling of longitudinal and survival data has received much attention in the
recent years and is becoming increasingly used in clinical studies. When the lon-
gitudinal outcome and survival endpoints are associated, the many well-established
models with different specifications proposed to analyse separately longitudinal and
time-to-event outcomes are not suitable to analyse such data and a joint modelling
approach is required. Although some joint models were adapted in order to allow
for competing endpoints, this methodology has not been widely disseminated. The
present study has as main objective to model jointly longitudinal and survival data
in a competing risk context, discussing the different parameterisations of systematic
implementations of these models in the R, using a real data set as an example for
the comparison between the different model approaches. The relevance of this issue
is associated with the need to draw attention of the users of this statistical software
to the different interpretations of model parameters when fitting these models. To
reinforce the relevance of these models in clinical research, we give an example of a
data set on peritoneal dialysis that was analysed in this context, where death/transfer
to haemodialysis was the event of interest and renal transplant was the competing
event. Joint modelling results were also compared to separate analysis for these data.
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1. INTRODUCTION

In many clinical research studies, it is relevant to simultaneously analyse
information on a longitudinal repeatedly registered biomarker and on the time
to a specific outcome event. Furthermore, more than one outcome event may
occur. In these situations, when longitudinal and time-to-event outcomes are
associated, a joint modelling approach taking competing risks into account is
required to correctly analyse such data [23, 25].

Although, in cross-sectional clinical studies only one measure of each clinical
parameter (often the baseline) is used to guide medical decisions, the use of
additional information on repeated measures of clinical parameters allows a better
understanding of the disease progression or treatment benefits [1]. In this type of
longitudinal studies, the analysis of repeated measures of clinical parameters may
be supplemented with information about the time at which an event of interest
has occurred, that is, survival data (also designated by time-to-event data).

With the purpose of analysing separately longitudinal and survival data,
methods such as linear mixed model [4] and Cox proportional hazard model [3],
respectively, are well-established. However, when longitudinal measurements are
correlated with time-to-event (i.e., in the presence of informative censoring - when
the reason for censure is related to the study outcomes), when repeated measures
are measured with error and/or when some missing values are present a joint
modelling approach is required [23]. These aspects that realistically characterize
observed data lead to biased inferences if naive separate methods are applied
[5, 7, 9, 12, 20, 23].

Therefore, in joint modelling methodology several objectives may be for-
mulated, according to the main focus of the analysis [5, 10]: (i) to analyse the
time-to-event outcome, taking into account the effect of a longitudinal outcome
as endogenous time-dependent covariate measured with error, (ii) to analyse the
longitudinal outcome in the presence of informative (non-random) dropout time
and (iii) to analyse effects of covariates of interest on both type of outcomes
(longitudinal and time-to-event) simultaneously.

Despite joint modelling of longitudinal and survival data is becoming in-
creasingly popular [2, 18, 24], joint modelling in competing risk framework has
not been widely used in medical context. Given the complexity of the joint mod-
elling approach in the presence of competing risks, several limitations can be
enumerated, namely the small number of models implemented in statistical soft-
ware and the restriction associated to the number of shared random effects to be
integrated out in the likelihood function due to computational limitations [14].

Several authors have suggested extensions of joint models so that they
could be applied in a competing risks problem, such as Elashoff et al. [6, 7],
Williamson et al. [25], Li et al. [13] and Rizopoulos [19]. The approaches differ



248 Laetitia Teixeira, Inês Sousa, Anabela Rodrigues and Denisa Mendonça

according to parameterisation, joint likelihood function and estimation method
considered. Up to now there are only two statistical packages, available in the
CRAN repository, that implement systematically two different parameterisations,
the JM package [19] and the joineR package [25].

A very recent review of several implementations of joint modelling was
published [11], which summarize four published models, which have software
available for model estimation. Each model features a different hazard function,
latent association structure between the longitudinal and survival submodels,
estimation approach and software implementation. The models described were
applied to a trial of anti-epileptic drugs. However, in this work we further discuss
the packages joineR and JM, namely the different interpretations of the model
coefficients and the application in another clinical area.

Peritoneal dialysis is one of the main renal replacement therapy. The pro-
gression of end-stage renal disease patients included in a peritoneal dialysis pro-
gram is monitored with regular control visits where several clinical parameters are
recorded, as well as the time until the occurrence of relevant endpoints. Then,
as in many other clinical research areas, in addition to the baseline character-
istics, peritoneal dialysis patient data present two different types of outcomes:
(i) longitudinal outcome, composed by clinical parameters measured at several
time points (such as albumin), and (ii) time-to-event outcome, composed by the
follow-up time until the occurrence of an event of interest. In the specific case
of peritoneal dialysis patients, it is only possible to observe the first outcome
event (and consequently the first time-to-event) from a set of possible competing
events: death/transfer to haemodialysis and renal transplant. For this reason,
we are in a competing risks framework [22].

As referred above, the focus of the present study is on the two approaches to
joint model, which are the only ones implemented in common statistical software
(R) for systematic use by any users, (1) JM package by Rizopoulos [19] and (2)
joineR package by Williamson et al. [25]. In practice these two implementations
of joint models correspond to different parameterisations with different parameter
interpretations. With this work we emphasize that it is important to discuss at
this stage the differences between the two joint models, since interpretation of
model parameters are different, and confusing interpretations may occur. Notice
that, using a real data set as an example, we want to analyse the differences of
the results when using the two model approaches and make interpretations on
the results. It is not our purpose to go further about the performance of the two
approaches. Additionally, the implementation of these approaches allows us to
illustrate the relevance of the joint modelling methodology in the evaluation of a
peritoneal dialysis program.

The objective of this present study is threefold: i) to jointly model longi-
tudinal and survival data in a competing risks framework; ii) to discuss different
parameterisations of systematic implementations of these models in the available
R statistical software; iii) to analyse data on peritoneal dialysis program under
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a joint modelling approach with competing risks and compare results with those
from separated longitudinal and survival analysis.

In the next section we review the theory of joint modelling, with focus
on the competing risks approach. The third section presents the results of the
analysis of the peritoneal dialysis dataset. Finally, a discussion and conclusion
compose the last section.

2. JOINT MODELLING IN THE PRESENCE OF COMPETING
RISKS

The joint modelling approach takes into account the association between
the survival and longitudinal process, determining simultaneously the parameter
estimates for both processes [14]. Different models can be considered, differing on
the decomposition of the joint likelihood of the longitudinal and survival processes
and on the submodels formulation for each outcome. The models most commonly
used are selection models, pattern-mixture models and random effects models,
and each model providing different information [21]. The two parameterisations
considered in this work are classified as random effects models, where the survival
process is assumed to be associated with the longitudinal process through shared
random effects. In the presence of competing risks, the survival submodel needs
to take into account the presence of several possible endpoints. In order to model
jointly a longitudinal and a time-to-event outcome in the presence of competing
risks some approaches are presented below.

According to the focus of the analysis, different specifications of the joint
model might be considered, which corresponds to different parameterisations of
the model, taking us to different interpretations of the model parameters.

When the focus is on the survival process and the interest is to analyse the
effect of a endogenous time-dependent covariate (for example a clinical parame-
ter such as albumin measured along time) on the time until an event of interest
(for example, death), the time-dependent cause-specific hazard regression model
usually used in competing risk survival analysis is not appropriate. Results ob-
tained from this model may be substantially biased since longitudinal measures
are measured with error [5, 6]. In these situations, the fundamental idea is to
construct a suitable model to describe the evolution in time for the longitudinal
outcome, and then to use this estimated evolution as time-dependent covariate
in the survival model, considering a jointly estimation [1].

Alternatively, when the focus is on the longitudinal process (for example,
of some clinical parameter such as albumin), the joint modelling approach is
required when missing observations of the longitudinal outcome may be related
with the endpoint observed (i.e. in the presence of informative censoring). The
use of a joint modelling approach reduces the bias in the estimates [14].
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Additionally, if the focus is on both processes, the aim of the model is on
inference regarding the strength of the link between the two processes [14, 16].

Let yi(t) be the observed value of a longitudinal response for the subject
i at time point t, measured with error. Let Ti and Ci be the failure and non-
informative censoring times and k the event observed of a set of K possible events
(k = 1, ...,K). The event indicator is given by δi = {I(Ti ≤ Ci), k}, where δi = 0
if non-informative censoring occurs.

2.1. JM package

The JM package that implements the parameterisation proposed by Ri-
zopoulos [19] was adapted to a competing risks problem [19]. This approach
considers a linear mixed effects submodel for the longitudinal outcome and a
relative risk submodel for each possible competing event. This model allows
to quantity the effect of a longitudinal covariate in the time-to-event outcome,
particularly when the longitudinal covariate is measured with error [14].

Consider mi(t) the true and unobserved value of the longitudinal outcome
yi(t) at time t. In order to measure the effect of an endogenous covariate on
the risk for an event, mi(t) needs to be estimated. Furthermore, the com-
plete history of the true unobserved longitudinal process up to time point t,
Mi(t) = {mi(s), 0 ≤ s < t}, is successfully reconstructed using the available
measurements yi = {yi(t), t = 1, ..., ni} of each subject (where ni represents the
number of longitudinal measurements for each subject i) and a set of modelling
assumptions. A linear mixed effects model is considered to describe the subject-
specific longitudinal evolutions and it is defined as:

(2.1) yi(t|x1i,W1i) = x1i(t)
Tβ1 +W1i(t) + εi(t) = mi(t) + εi(t)

where β1 denotes the vector of the unknown fixed effects parameters, x1i(t) de-
notes row vectors of the design matrix for the fixed effects and εi(t) is the mea-
surement error term with variance σ2 (εi(t) ∼ N(0, σ2)). W1i(t) is the value at
time t of an unobserved zero-mean Gaussian random process.

To quantify the effect of mi(t) on the risk for an event, λi, the authors
proposed the use of a relative risk model:

(2.2) λi(t|Mi(t), x2i) = λ0(t) exp{xT2iβ′2 + αmi(t)}

where λ0(t) denotes the baseline risk function and x2 is a vector of baseline
covariates with a corresponding vector of regression coefficients β′2. Parameter
α quantifies the effect of the underlying longitudinal outcome on the risk for an
event: exp(α) denotes the relative increase in the risk for an event at time t that
results from one unit increase in mi(t) at the same time point, adjusting for the
remaining exploratory variables in the model.
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In the presence of competing risks the notation for the survival submodel
needs to be adapted. Then, for the event k, the standard relative risk model can
be defined as:

(2.3) λki(t|Mi(t), x2i) = λ0k(t) exp{xT2iβ′2k + (α1 + αk)mi(t)}

where k = 1 represents the event of interest and k = 2, ...,K the competing events,
λ0k(t) denotes the baseline risk function and x2 is a vector of baseline covariates
with a corresponding vector of regression coefficients β′2. α1 quantifies the effect
of the underlying longitudinal outcome on the risk for the event of interest and
α2, ..., αK quantifies the additional effect of the underlying longitudinal outcome
on the risk for the respective competing event. In this model, each of β′2k is
interpreted as the effect of each explanatory variable on the relative risk of event
k after adjusting for the effect of the longitudinal response, which might also
include the effect of the same explanatory variable. Then, the overall effect of
a covariate on the hazard might be decomposed into the direct effect (survival
submodel) and the indirect effect (longitudinal submodel) [11].

The estimation method proposed in this approach is the maximum likeli-
hood considering a joint distribution of the observed outcomes {Ti, δi, yi}. This
joint distribution is defined assuming that the vector of time-independent random
effects W1i underlies both the longitudinal and survival processes (the random
effects account for both the association between the longitudinal and event out-
comes, and the correlation between the repeated measurements in the longitudinal
process). The likelihood function is given by

(2.4) p(Ti, δi, yi|W1i; θ) = p(Ti, δi|W1i; θ)p(yi|W1i; θ)

and

(2.5) p(yi|W1i; θ) =

ni∏
j=1

p{yi(tij)|W1i; θ}

where θ = (θTt , θ
T
y , θ

T
W1

) denotes the full parameter vector, with θt denoting the
parameters for the event time outcome, θy the parameters for the longitudinal
outcome and θW1 the parameters of the random-effects covariance matrix. Addi-
tionally, it is assumed that given the observed history, the censoring mechanism
and the visiting process are independent of the true event times and future lon-
gitudinal measurements.

In the presence of competing risks, the likelihood part for the event process
takes the form:

p(Ti, δi|W1i; θt, β1) =

K∏
k=1

[λ0k(Ti) exp{xT2iβ′2k + αkmi(Ti)}]I(δi=k)

× exp(−
K∑
k=1

∫ Ti

0
λ0k(s) exp{xT2iβ′2k + αkmi(s)}ds)

(2.6)
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The Expectation-Maximization (EM) algorithm was used to maximized the log-
likelihood function l(θ) =

∑n
i=1 log p(Ti, δi, yi; θ). The aim is to find the param-

eter values θ̂ that maximize the observed data log-likelihood l(θ), but by maxi-
mizing instead the expected value of the complete data log-likelihood (treating
random effects as missing data). Additional information of this approach can be
founded in Rizopoulos [19].

2.2. joineR package

Williamson et al. [25] proposed a competing risks random-effects joint
model fitting a cause-specific hazard submodel (allowing for competing risks)
with a separate latent association between longitudinal measurements and each
event [25]. The idea behind this model is to analyse data arising from compet-
ing survival and longitudinal processes simultaneously exploiting dependencies
between the components. Given that the main focus of this approach is the link
between longitudinal and survival processes, the association between these two
processes is represented through shared latent random effects. For example, for
a shared latent random effect model, this association is achieved through the in-
clusion of the longitudinal random intercept and/or random slope terms into the
survival process model [14].

A Gaussian linear model is assumed for longitudinal response y(t) at time
t (longitudinal submodel):

(2.7) yi(t|x1i,W1i) = x1i(t)
Tβ1 +W1i(t) + εi(t)

where β1 denotes the vector of the unknown fixed effects parameters, x1i(t) de-
notes row vectors of the design matrix for the fixed effects, W1i(t) the value at
time t of an unobserved zero-mean Gaussian random process and εi(t) denotes
zero-mean Gaussian measurement error with variance σ2.

The difference between the JM and joineR approaches is in the survival
submodel. Survival time is associated with the longitudinal response through
a second zero-mean latent Gaussian process W2i(t), correlated with W1i(t). A
semi-parameteric proportional hazards model is assumed conditioned to W2i(t),
with hazard λi defined as:

(2.8) λi(t|x2i,W2i) = λ0(t) exp{xT2iβ2 +W2i(t)}

where λ0(t) is an unspecified baseline hazard and x2 is a vector of baseline covari-
ates with a corresponding vector of regression coefficients β2. The longitudinal
and survival processes are assumed to be conditionally independent given W1

and W2, usually considered as a linear combination of Gaussian random effects
[25]. If the two processes W1 and W2 were independent, we would be in the pres-
ence of two separate analyses (longitudinal and survival). Though, being W1 and
W2 related with each other, their correlation will drive the association between
longitudinal and survival processes.
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This model was extended in order to include competing risks. In this case,
a cause-specific hazard submodel with a separate latent association between lon-
gitudinal measurements and each possible event was considered. The longitudinal
submodel remains the same type of model considered in the joint model without
competing risks. On the other hand, one survival submodel for each competing
risks is considered. Thus the survival submodel for cause k is defined as:

(2.9) λki(t|x2i,W2i) = λ0k(t) exp{xT2iβ2k +W2ki(t)}

where λ0k(t), k = 1, 2, ...,K, are unspecified baseline hazard functions, x2 is a
vector of baseline covariates and W2k(t) , k = 1, 2, ...,K, are zero-mean latent
Gaussian processes. In this case, it is assumed that W2k(t) = γkW1(t), i.e., W1

and W2 are proportional. The parameter γk indicates the level of association
between the two components, i.e, quantify the effect of the unobserved stochastic
process W1 on the risk for the event k. Longitudinal responses and competing
risks survival times are assumed to be conditionally independent given W1 and
W2. In this parameterisation of the joint model the coefficient β2k corresponds
to the total effect of each explanatory variable on the relative risk of event k, after
adjusting for an unobserved Gaussian process that do not include fixed effects.
This different interpretation can be contrasted with the one previously given to
β′2k in the JM package.

The likelihood function for observed data is factorized as the product of the
marginal distribution of y and the conditional distributions of competing events
η ∈ (1, ...,K) given the observed values of y.

Considering θ the combined vector of unknown parameters and Ly(y, θ)
the standard likelihood corresponding to the marginal multivariate normal dis-
tribution of y. Conditional on latent processes W2k(t), the competing risks are
independent of themselves and of the measurements y. The likelihood function
is given by:

(2.10) L(y, θ, η) = Ly(y, θ)

K∏
k=1

Lη|y,k

where

(2.11) Lη|y,k = EW2k|y{Lη|W2k
(θ, η = k|W2k)}

in which the conditional likelihood for each competing event, Lη|W2k
(θ, η =

k|W2k) captures any likelihood contribution arising from the number of longi-
tudinal measurements observed before the kth competing event. In this model
parameterisation, it is assumed that there is an unobserved process W1 that drives
both y and risk for event, λk. The effect of covariates in hazard is both direct
and overall [11].

In order to maximize the likelihood of the observed data and estimate the
parameters of interest, EM algorithm is used, similarly as the JM approach. More
details of this approach can be founded in Williamson et al. [25], Diggle et al.
[5], Henderson et al. [10] and in Philipson et al. [17].
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3. PERITONEAL DIALYSIS DATA

In order to compare the two model specifications presented above and dis-
cuss the interpretation of model parameters, the methods, JM and joineR, were
used to analyse peritoneal dialysis data. For the joineR, the extension to accom-
modate competing risks was requested directly to the author since our analyse
started before the formal library to perform this analysis became available at
September 2017.

Along the permanence in peritoneal dialysis program, different types of
information concerning the patients and their health condition are collected.
Firstly, information about baseline characteristics of the patients such as sex
and age is considered. During the follow-up, albumin is usually recorded in each
control visit (usually one per month). Finally, the event that forced the patient
to abandon the treatment program (death, transfer to haemodialysis and renal
transplantation) and the respective follow-up time are also reported given their
clinical relevance. Then, due to the diversity of information resulting of the mo-
torization of these patients, efficient and powerful regression models, such as joint
models for longitudinal and time-to-event outcomes are required to analyse such
data.

The sample of this study comprises patients included in the peritoneal dial-
ysis program of the Peritoneal Dialysis Unit, Nephrology Department, Hospital
Geral de Santo António, Centro Hospitalar do Porto, Porto, Portugal. The sam-
ple is composed by 160 patients who started peritoneal dialysis therapy between
October 1999 and February 2013. Sex and age were considered as baseline covari-
ates. Serum albumin level is an important clinical parameter for end-stage renal
patients and it is used to assess the health status of patients in dialysis [15].
Low albumin level is associated with kidney failure. The number of measures
and the time between measures differed for each patient. Combined survival,
characterized by the combined event death/transfer to haemodialysis, represents
an important indicator for the evaluation of a peritoneal dialysis program. Then,
in this application, this combined event was considered as the event of interest
and renal transplantation as the competing risk event. Registry data collection
and analysis was submitted to ethical appreciation and approved by the National
Commission of Data Protection, which is the national supervisory authority for
personal data control.

Females represented 51.9% (n=83) of the total sample (n=160), which has
an overall mean age of 47.9 years (sd=14.4 years). Thirty patients (18.8%) had di-
abetes. The median of follow-up time was 27.4 months (IQR: 12.8-49.0 months).
Considering the longitudinal outcome, the number of measures of albumin varied
among patients, with a minimum of 1 observation and a maximum of 60 observa-
tions. The median of observations per patient was 13 (IQR: 6-23 observations).
The mean score of albumin was 3.7 g/dL (sd=0.4 g/dL) for a total of 3129 obser-
vations. Considering the time-to-event outcome, 53 (33.1%) patients experienced
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the event of interest (death or transfer to haemodialysis) and 41 (25.7%) the
competing risk (renal transplant). Survival times were censored for 66 (41.2%)
patients who were still active on the peritoneal dialysis program at the end of the
study.

3.1. Exploratory analysis

A spaghetti plot showing the albumin individual progressions (grey lines)
of the longitudinal response for the different competing events is presented in
Figure 1. The black lines in Figure 1 represent a smooth spline of all observation
points in the same plot.

Figure 1: Smooth spline empirical mean of albumin evolution for the three
subset of events: death/transfer to haemodialysis, renal trans-
plant and censored.

Considering Figure 1, we verify that the mean of albumin score differs
slightly according to the final event observed, showing a possible association
between longitudinal albumin evolution and survival endpoint. Then, the analysis
requires a joint modelling approach.

An estimate of the empirical variogram γ(u) is presented in Figure 2. The
diagram shows both the basic quantities (uijk, υijk), where υijk = 1

2(rij − rik)2
is calculated from observed half-squared differences between pairs of residuals, of
an ordinary least squares model (considering albumin as dependent variables and
gender, age and time as independent variables), and uijk = tij − tjk the corre-
sponding time-differences, and the kernel smooth estimate of γ(u). To accentuate
the shape of the smooth estimate, the vertical axis was truncated at 0.2. The var-
iogram smoothly increases with lag corresponding to a decreasing correlation as
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observations are separated in time. The horizontal line represents the variogram-
based estimate of the process variance, which is substantially large than the value
of the sample variogram, indicating that the positive correlation remains at arbi-
trarily large time separations. The empirical variogram of residuals, after fitting
the data for an ordinary least squares model, allows us to understand the correla-
tion structure of the longitudinal data. From Figure 2, we can see that the total
variance in the data can be decomposed into three variance components, variance
between and within subjects and measurement error. Therefore, a longitudinal
approach shows to be adequate for these data.

Figure 2: Empirical Variogram.

The cumulative incidence curves [8] give a global idea about the survival
process. Figure 3 summarizes the cumulative incidence estimates for the two
possible events taking competing risks into account (the time axis were halted
at 60 months because the proportion of patients free of an event, but still in
follow-up, becomes small). The probability of death/transfer to haemodialysis
is always higher than the probability of renal transplantation. For example, the
probabilities of death/transfer to haemodialysis by 1, 2 and 3 years after starting
peritoneal dialysis were 0.08, 0.16 and 0.26 respectively and by the same time
points the probabilities of renal transplantation were 0.05, 0.14 and 0.20.

3.2. Joint modelling

With the purpose of evaluating the relationship between longitudinal albu-
min scores and death/transfer to haemodialysis, in the presence of the compet-
ing risk renal transplantation, two joint model specifications implemented in the
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Figure 3: Cumulative incidence curves for death/transfer to haemodialysis
(solid line) and for renal transplantation (dotted line).

software R were analysed: the JM package proposed by Rizopoulos [19] and the
joineR package proposed by Williamson et al. [25], both adapted to a competing
risk situation. Furthermore, the parameters estimates and their standard errors
using the joint modelling specifications were compared to those obtained with
the independent models, a linear mixed model for the longitudinal outcome and
a time-dependent Cox model with competing risks for the survival outcome.

For the two joint model specifications discussed above, a linear mixed-
effects model was assumed for the longitudinal albumin outcome, with evolution
in time for each patient with different average effects per sex and age. For no-
tation simplification the individual index i and time index j were dropped. The
longitudinal submodel used was defined as (see equations (2.1) and (2.7)):

(3.1) y(t) = m(t) + ε(t) = β0 + β11Sex+ β12Age+ β13time+ b0 + b1time+ ε(t)

where y represents the albumin score and β11, β12 and β13 represent the pa-
rameters of the fixed-effects part composed by the main effect of sex, age and
time, respectively. The unobserved zero-mean Gaussian random process W1(t)
as in Equation (2.1) and (2.7) is, in this case, a linear combination of a ran-
dom intercept b0 and a random slope b1. That is, (b0, b1) has bivariate Gaussian
distribution with variances σ2(b0) and σ2(b1), respectively, and correlation ρ.

Notice that, from Figure 2 the empirical variogram indicates the need to
include a random effect at subject level (b0, included) but also a possible Gaussian
stochastic process with a time correlation structure, as well as a random noise
(ε(t), included). However, we have fitted a model without a Gaussian stochastic
process because none of the systematic implementations, JM and joineR, allow
to include such a term in the model. This is due to the computational implemen-
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tation involved to estimate parameters of such a model. In particular, we would
have to integrate out a continuous Gaussian process in any time points observed.

In practice, this is one of the arguments of the importance of having system-
atic implementations of any statistical model to be fitted by any users. Though,
it implies correct interpretation and use of these statistical models. Therefore,
a random intercept effect and a random slope effect were included in the model
for peritoneal dialysis data, because this is the possible way to incorporate a
time-dependent correlation structure within patient, which was indicated by the
variogram, in any of the model implementations.

For the event process, the two approaches presented in this study have
different formulation.

For the JM joint model, two cause-specific relative risks models were as-
sumed, one for each possible event (see equation (2.3)):

(3.2)


λ1(t) = λ01(t) exp{β′211Sex+ β′212Age+ α1m(t)}

λ2(t) = λ02(t) exp{β′221Sex+ β′222Age+ (α1 + α2)m(t)}

The parameters β′211, β
′
212 and α1 denote the direct effects of sex, age, and

albumin, respectively, on the risk for death/transfer to haemodialysis and the
parameters β′221 and β′222 denote the effects of sex and age, respectively, on the
risk for renal transplantation. The parameter α2 corresponds to the additional
effect of the albumin score on the renal transplantation.

Considering the joineR joint model, a semi-parameteric cause-specific haz-
ard model for each event was assumed (see equation (2.9)):

(3.3)


λ1(t) = λ01(t) exp{β211Sex+ β212Age+ γ1W21(t)}

λ2(t) = λ02(t) exp{β221Sex+ β222Age+ γ2W22(t)}

The parameters β211, β212 and γ1 denote the effects of sex, age, and al-
bumin in the underlying unobserved process W1, respectively, on the risk for
death/transfer to haemodialysis while the parameters β221, β221 and γ2 denote
the effects of sex, age, and albumin in the underlying unobserved process W1,
respectively, on the risk for renal transplantation. This approach has as focus
the link between the two longitudinal and survival processes. Therefore, the as-
sociation between these processes is represented through shared latent random
effects, achieved through the inclusion of the longitudinal random intercept (b0)
and random slope (b1) terms into the survival process.

The parameters estimates and respective p-value using joint modelling ap-
proaches are presented in Table 1. For both approaches, standard error of the
parameter estimates were obtained by refitting the models to 500 bootstrap sam-
ples generated using the original data. The bootstrap sampling was performed
with replacement.
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Among the joint models fitted, despite the formulation of the longitudinal
submodel was the same, the association structures and method of estimation used
can have different influences on the longitudinal submodel estimates [11]. In this
application, similar results were obtained for both approaches, with a decrease in
the albumin score along time.

Considering the results obtained for the survival submodel with the JM
package [19], we verify an association between albumin and the risk of death/
transfer to haemodialysis (α̂1 = −1.24, p = 0.011), meaning that a unit decrease
in the marker corresponds to a exp(−(−1.24)) = 3.5-fold increase in the risk
for death/transfer to haemodialysis, controlling for the remaining factors in the
model. No association between albumin and the risk of renal transplantation
was found (α̂1 + α̂2) = 0.54 (se = 0.47), p = 0.250). Younger patients have a
statistically significant higher hazard of getting a renal transplant (hazard ratio
for one year decrease in age equals exp(−(−0.041)) = 1.04 (p < 0.001). The
direct effect of age in the hazard must be interpreted by also adjusted for the
age-specific effect on albumin (longitudinal submodel). The log-likelihood from
this joint model was -730.2515.

Results based on the joineR package [25] show a significantly γ̂1 estimate
indicating that albumin score is positively associated with time to death/transfer
to haemodialysis. However, no evidence of association between albumin and time
to renal transplantation was found (γ̂2 = 0.28, p = 0.625). As expected, the esti-
mates of the association parameters for the two competing events have opposite
signs given that these two events have opposite reasons for discontinuation of
therapy. Age (direct effect) was identified as statistically significant risk factor
for renal transplantation (higher ages present lower hazard of renal transplanta-
tion), but not for death/transfer to haemodialysis. The log-likelihood from this
joint model was -603.9029.

3.3. Separate analysis

Comparison of the parameters estimated and their standard errors from
the joint model with the naive independent approach (independent linear mixed
model and cause-specific hazard model), presented in Table 2, shows the dif-
ferences of approaches. Results obtained for longitudinal outcome were similar.
However, different results were obtained for time-to-event outcome. In separate
analysis, sex was a significant factor for both events (HR = 1.41 (p < 0.001) for
event death/transfer to haemodialysis and HR = 1.42 (p < 0.001) for event
renal transplantation). Additionally, albumin (considered as time-dependent
covariate) was a statistically significant factor for the event renal transplant
(HR = 1.57, p < 0.001).
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JM package joineR package
Coefficient (se) p Coefficient (se) p

Longitudinal model
Fixed effects
Intercept 3.88 (0.11) < 0.001 3.88 (0.12) < 0.001
Sex (male) 0.24 (0.062) < 0.001 0.24 (0.078) 0.002
Age -0.0052 (0.002) 0.014 -0.0051 (0.002) 0.025
Time -0.0015 (0.0018) 0.400 -0.0014 (0.0007) 0.069

Survival submodel
Event of interest (D/TH)
Sex (male) 0.41 (0.33) 0.209 0.12 (0.28) 0.649
Age -0.012 (0.011) 0.278 -0.007 (0.010) 0.502
Association coefficient -1.24 (0.49) 0.011 -1.41 (0.50) 0.005

Competing risk (RT)
Sex (male) 0.51 (0.40) 0.204 0.62 (0.37) 0.091
Age -0.041 (0.012) < 0.001 -0.048 (0.013) < 0.001
Association coefficient 0.54* (0.47) 0.250 0.28 (0.59) 0.625

σ̂(ε) 0.0524 0.0524

σ̂(b̂0) 0.147 0.159

σ̂(b̂1) 0.000117 0.000123
ρ̂ -0.388 -0.346

Log-likelihood -730.2515 -603.9029

Table 1: Parameter estimates for joint models fitted to albumin (longitu-
dinal outcome) and time to peritoneal dialysis treatment failure
(survival outcome) in the presence of competing risks. * indi-
cates α1 +α2. joineR package: Williamson et al. [24]; JM pack-
age: Rizopoulos [19]. D/TH: Death/Transfer to haemodialysis;
RT: Renal transplantation.

4. DISCUSSION/CONCLUSION

It is very common to find clinical studies with both longitudinal measure-
ments and event times. These measures are recorded on the participant of the
study during follow-up time. Joint models are appropriate when interest lies in
the association between a longitudinal covariate measured with error in a sur-
vival analysis or when accounting for event-dependent dropout in a longitudinal
analysis. Several simulation studies have shown that joint model could be sub-
stantially more efficient than the separate analysis [6] because these models use
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Separate analysis
Coefficient (se) p

Longitudinal model Fixed effects
Intercept 3.88 (0.11) < 0.001
Sex (male) 0.24 (0.062) < 0.001
Age -0.005 (0.002) 0.014
Time -0.0013 (0.0011) 0.270

Survival model Event of interest (D/TH)
Sex (male) 0.34 (0.070) < 0.001
Age 0.022 (0.0025) 0.371
Albumin -0.58 (0.086) < 0.001

Competing risk (RT)
Sex (male) 0.35 (0.085) < 0.001
Age -0.039 (0.0031) < 0.001
Albumin 0.45 (0.10) < 0.001

Table 2: Parameter estimates longitudinal and survival model fitted sep-
arately, considering albumin as longitudinal outcome and time
to peritoneal dialysis treatment failure as survival outcome in
the presence of competing risks. Longitudinal model: linear
mixed model; survival model: cause-specific. Cox propor-
tional hazard model with time-dependent covariate. D/TH:
Death/Transfer to haemodialysis; RT: Renal transplantation.

information from both outcomes. The literature about this theme is vast, and
some review paper [14, 16, 21, 23] present and discuss different type of joint
models focused on a single event with non-informative censoring. However, the
majority of these models have only one event for the time-to-event outcome, ex-
cluding the possibility of observing competing risks. A very recent review paper
described four approaches of joint models of longitudinal and survival data in
the presence of competing risks, with application to an epilepsy drug randomized
controlled trial. However, despite the recent methodological developments in the
field of joint modelling of competing risks and longitudinal data, they remain still
limited options for fitting these models in standard statistical software programs
[11].

This work represents as far as we know the first study in the peritoneal
dialysis area using joint modelling approach of longitudinal and survival data
taking competing risks into account. The results obtained with this methodology
produced new information about peritoneal dialysis program. Specifically, with
this model it is possible to evaluate the association between the two processes,
which cannot be obtained with standard survival models, contributing for a better
knowledge of peritoneal dialysis program resulting in better management of the
treatment program.
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The development of different parameterisations with different perspectives
and focuses allows to obtain different conclusions, and the choice of the model
was related with the main clinical objective defined. Therefore, the three main
objectives formulated in the context of joint modelling could be related with three
main clinical research questions: (i) to evaluate the impact of albumin level on
the combined survival, given that albumin level were recorded with measurement
error; (ii) to analyse longitudinal evolution of albumin clinical parameter, given
that lower levels of albumin may be associated with higher risk of mortality
and morbidity (consequently less fit for renal transplant), i.e., in the presence of
informative censoring; (iii) to evaluate the association between the progression
of albumin level and combined survival and the identification of factors that
influenced both outcomes.

In this paper, two parameterisations of a random shared effects joint model
were compared considering an example in peritoneal dialysis. These two ap-
proaches are focused in distinct aspects. The parameterisation implemented in
JM focuses mainly on the influence of a longitudinal variable measured with error
in the estimation of the survival submodel. In this case, it is possible to quan-
tify the effect of the longitudinal outcome in the survival hazard. On the other
hand, the parameterisation implemented in joineR focuses mainly on the link
between the processes, considering shared latent random effects to represent the
correlation between longitudinal and survival process [14]. For this reason, the
evaluation of the effect of an unobserved condition, shared between longitudinal
and survival, in the hazard is possible using this parameterisation.

The two parameterisations presented provided complementary conclusions,
given that they have different focus/objectives. The JM package was used to build
a joint model when the focus is on a patient’ s survival and the inaccuracies in
estimating albumin score. The joineR package was used to investigate the effect of
a patient’s changing albumin levels linking the longitudinal and survival processes
through latent random effects. Although the two parameterisations present some
differences relatively to the formulation, the modelling method of the baseline
function and the survival submodel, the results had shown an evident relationship
between the two processes in both approaches. This fact justifies the need for a
joint modelling approach, and the advantages of the use of this methodology is
highlighted when comparing results with separate analysis. Different conclusions
were obtained considering separate analysis or a joint analysis, as shown in the
previous section. Considering independent approaches, the focus is on the effect
on parameters estimates and their standards errors ignoring the link between
the longitudinal and survival processes and the longitudinal response measured
with error within the survival process [14]. For separate analysis the effects
of covariates that are significant, became not significant when a joint analysis
approach is done. This might be due to variability that is being overestimated
in a separate analysis, which is due to association between the two processes,
longitudinal and survival. When this is taking into account this effect disappears.

In conclusion, joint modelling for longitudinal and time-to-event outcomes
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in the presence of competing risks is useful in different areas of applications when
the interest is the evaluation of the relationship between these two types of out-
comes. In clinical studies diverse information about the patient is collected along
a disease stages or treatment duration, and these models become an appropriate
approach. Then it is necessary to alert clinicians for the implications and the
advantages of a proper data collection and a correct data analysis.
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