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Abstract:

• A special class of standard Gaussian Autoregressive Hilbertian processes of order one

(Gaussian ARH(1) processes), with bounded linear autocorrelation operator, which

does not satisfy the usual Hilbert–Schmidt assumption, is considered. To compensate

the slow decay of the diagonal coefficients of the autocorrelation operator, a faster

decay velocity of the eigenvalues of the trace autocovariance operator of the innova-

tion process is assumed. As usual, the eigenvectors of the autocovariance operator of

the ARH(1) process are considered for projection, since, here, they are assumed to be

known. Diagonal componentwise classical and bayesian estimation of the autocorre-

lation operator is studied for prediction. The asymptotic efficiency and equivalence of

both estimators is proved, as well as of their associated componentwise ARH(1) plug-

in predictors. A simulation study is undertaken to illustrate the theoretical results

derived.
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1. INTRODUCTION

Functional time series theory plays a key role in the analysis of high-

dimensional data (see, for example, Aue, Norinho and Hörmann, 2014; Bosq,

2000; Bosq and Blanke, 2007). Inference for stochastic processes can also be

addressed from this framework (see Álvarez-Liébana, Bosq and Ruiz-Medina,

2016, in relation to functional prediction of the Ornstein–Uhlenbeck process, in

an ARH(1) process framework). Bosq (2000) addresses the problem of infinite-

dimensional parameter estimation and prediction of ARH(1) processes, in the

cases of known and unknown eigenvectors of the autocovariance operator. Alter-

native projection methodologies have been adopted, for example, in Antoniadis

and Sapatinas (2003), in terms of wavelet bases, and, in Besse and Cardot (1996),

in terms of spline bases. The book by Bosq and Blanke (2007) provides a general

overview on statistical prediction, including Bayesian predictors, inference by pro-

jection and kernel methods, empirical density estimation, and linear processes in

high-dimensional spaces (see also Blanke and Bosq, 2015, on Bayesian prediction

for stochastic processes). Recently, Bosq and Ruiz-Medina (2014) have derived

new results on asymptotic efficiency and equivalence of classical and Bayes pre-

dictors for l2-valued Poisson process, where, as usual, l2 denotes the Hilbert space

of square summable sequences. Classical and bayesian componentwise parame-

ter estimators of the mean function and autocovariance operator, characterizing

Gaussian measures in Hilbert spaces, are also compared in terms of their asymp-

totic efficiency, in that paper.

We first recall that the class of processes studied here could be of interest

in applications, for instance, in the context of anomalous physical diffusion pro-

cesses (see, for example, Meerschaert et al., 2002; Gorenflo and Mainardi, 2003,

and Metzler and Klafter, 2004, and the references therein). An interesting exam-

ple of our framework corresponds to the case of spatial fractal diffusion operator,

and regular innovations. Specifically, the class of standard Gaussian ARH(1)

processes studied have a bounded linear autocorrelation operator, admitting a

weak-sense diagonal spectral representation, in terms of the eigenvectors of the

autocovariance operator. The sequence of diagonal coefficients, in such a spec-

tral representation, displays an accumulation point at one. The singularity of

the autocorrelation kernel is compensated by the regularity of the autocovariance

kernel of the innovation process. Namely, the key assumption here is the summa-

bility of the quotient between the eigenvalues of the autocovariance operator of

the innovation process and of the ARH(1) process. Under suitable conditions,

the asymptotic efficiency and equivalence of the studied diagonal component-

wise classical and bayesian estimators of the autocorrelation operator are derived

(see Theorem 4.1 below). Under the same setting of conditions the asymptotic

efficiency and equivalence of the corresponding classical and bayesian ARH(1)

plug-in predictors are proved as well (see Theorem 4.2 below). Although both
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theorems only refer to the case of known eigenvectors of the autocovariance oper-

ator, as illustrated in the simulation study undertaken in Álvarez-Liébana, Bosq

and Ruiz-Medina (2017) (see also Ruiz-Medina and Álvarez-Liébana, 2017), a

similar performance is obtained for the case of unknown eigenvectors, in com-

parison with other componentwise, kernel-based, wavelet-based penalized and

nonparametric approaches adopted in the current literature (see Antoniadis and

Sapatinas, 2003; Besse and Cardot, 1996; Bosq, 2000; Guillas, 2001; Mas, 1999).

Note that, for θ being the unknown parameter, in order to compute

E (θ|X1, ..., Xn), with X1, ..., Xn denoting the functional sample, we suppose that

θj⊥
(
Xi,j′ , i ≥ 1, j′ 6= j

)
, which leads to

〈E (θ|X1, ..., Xn) , vj〉H = E (θj |X1, ..., Xn) = E (θj |X1,j , ..., Xn,j) .

Here, for each j ≥ 1, θj = 〈θ, vj〉H , and Xi,j = 〈Xi, vj〉H , i = 1, ..., n, with 〈·, ·〉H
being the inner product in the real separable Hilbert space H. Note that {vj , j ≥1}
denotes an orthonormal basis of H, diagonalizing the common autocovariance

operator of X1, ..., Xn. We can then perform an independent computation of the

respective posterior distributions of the projections θj , j ≥ 1, of parameter θ,

with respect to the orthonormal basis {vj , j ≥ 1} of H.

Finally, some numerical examples are considered to illustrate the results

derived on asymptotic efficiency and equivalence of moment-based classical and

beta-prior-based Bayes diagonal componentwise parameter estimators, and the

associated ARH(1) plug-in predictors.

2. PRELIMINARIES

The preliminary definitions and results needed in the subsequent develop-

ment are introduced in this section. We first refer to the usual class of standard

ARH(1) processes introduced in Bosq (2000).

Definition 2.1. Let H be a real separable Hilbert space. A sequence Y =

(Yn, n ∈ Z) of H-valued random variables on a basic probability space (Ω,A, P ) is

called an autoregressive Hilbertian process of order one, associated with (µ, ε, ρ),

if it is stationary and satisfies

(2.1) Xn = Yn − µ = ρ(Yn−1 − µ) + εn = ρ(Xn−1) + εn, n ∈ Z,

where ε = (εn, n ∈ Z) is a Hilbert-valued white noise in the strong sense (i.e., a

zero-mean stationary sequence of independent H-valued random variables with

E‖εn‖2
H = σ2 < ∞, for every n ∈ Z), and ρ ∈ L(H), with L(H) being the space

of linear bounded operators on H. For each n ∈ Z, εn and Xn−1 are assumed to

be uncorrelated.
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If there exists a positive j0 ≥ 1 such that ‖ρj0‖L(H) < 1, then, the ARH(1)

process X in (2.1) is standard, and there exists a unique stationary solution to

equation (2.1) admitting a MAH(∞) representation (see Theorem 3.1 in Bosq,

2000, p. 74).

The autocovariance and cross-covariance operators are given by

C = E[Xn ⊗ Xn] = E[X0 ⊗ X0], n ∈ Z,
(2.2)

D = E[Xn ⊗ Xn+1] = E[X0 ⊗ X1], n ∈ Z,

where, for f, g ∈ H,

f ⊗ g(h) = f 〈g, h〉H , ∀h ∈ H,

defines a Hilbert–Schmidt operator on H. Operator C is assumed to be in the

trace class. In particular, E‖Xn‖2
H < ∞, for all n ∈ Z. It is well-known that,

from equations (2.1) and (2.2), for all h ∈ H, D(h) = ρC(h) (see, for example,

Bosq, 2000). However, since C is a nuclear or trace operator, its inverse operator

is an unbounded operator in H. Different methodologies have been adopted

to overcome this problem in the current literature on ARH(1) processes. In

particular, here, we consider the case where C(H) = H, under Assumption A2

below, since C is assumed to be strictly positive. That is, its eigenvalues are

strictly positive and the kernel space of C is trivial. In addition, they are assumed

to have multiplicity one. Therefore, for any f, g ∈ H, there exist ϕ, φ ∈ H such

that f = C(ϕ) and g = C(φ), and

〈
C−1

(f), C−1
(g)
〉
H

=
〈
C−1

(C(ϕ)), C−1
(C(φ))

〉
H

= 〈ϕ, φ〉H .

In particular, ‖C−1
(f)‖2

H < ∞, for every f ∈ H.

Assumption A1. The operator ρ in (2.1) is self-adjoint with ‖ρ‖L(H) < 1.

Assumption A2. Operator C is strictly positive, and its positive eigen-

values have multiplicity one. Furthermore, C and ρ admit the following diagonal

spectral decompositions: For all f, g ∈ H,

C(g)(f) =

∞∑

k=1

λk(C) 〈φk, g〉H 〈φk, f〉H(2.3)

ρ(g)(f) =

∞∑

k=1

ρk 〈φk, g〉H 〈φk, f〉H ,(2.4)

where {λk(C), k ≥ 1} and {ρk, k ≥ 1} are the respective systems of eigenvalues

of C and ρ, and {φk, k ≥ 1} is the common system of orthonormal eigenvectors

of the autocovariance operator C.
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Remark 2.1. As commented before, we consider here the case where the

eigenvectors {φk}k≥1 of the autocovariance operator C are known. Thus, under

Assumption A2, the natural way to formulate a componentwise estimator of the

autocorrelation operator ρ is in terms of the respective estimators of its diagonal

coefficients {ρk}k≥1, computed from the respective projections of the observed

functional data, X0, ..., XT , into {φk, k ≥ 1}. We adopt here a moment-based

classical and Beta-prior-based bayesian approach in the estimation of such coef-

ficients {ρk}k≥1.

From Cauchy–Schwarz inequality, applying Parseval identity,

|ρ(g)(f)|2 ≤
∞∑

k=1

|ρk| [〈φk, g〉H ]
2

∞∑

k=1

|ρk| [〈φk, f〉H ]
2

≤
∞∑

k=1

[〈φk, g〉H ]
2

∞∑

k=1

[〈φk, f〉H ]
2

= ‖g‖2
H‖f‖2

H < ∞.

Thus, equation (2.4) holds in the weak sense.

From Assumption A2, the projection of Xn into the common eigenvector

system {φk, k ≥ 1} leads to the following series expansion in L2
H(Ω,A, P ) :

(2.5) Xn =

∞∑

k=1

√
λk(C)ηk(n)φk, ηk(n) =

1√
λk(C)

〈Xn, φk〉H ,

and, for each j, p ≥ 1, and n > 0,

E[ηj(n)ηp(n)] = E

[
1√

λj(C)
〈Xn, φj〉H

1√
λp(C)

〈Xn, φp〉H

]

=
1√

λj(C)

1√
λp(C)

C(φj)(φp)(2.6)

=
1√

λj(C)

1√
λp(C)

λj(C) 〈φj , φp〉H = δj,p,

where δ(·,·) denotes the Kronecker delta function, and the last equality is ob-

tained from the orthonormality of the eigenvectors {φk, k ≥ 1}. Hence, under

Assumptions A1 and A2, the projection of equation (2.1) into the elements

of the common eigenvector system {φk, k ≥ 1} leads to the following infinite-

dimensional system of equations:

(2.7)

√
λk(C)ηk(n) = ρk

√
λk(C)ηk(n − 1) + εk(n), k ≥ 1,

or equivalently,

(2.8) ηk(n) = ρkηk(n − 1) +
εk(n)√
λk(C)

, k ≥ 1,
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where εk(n) = 〈εn, φk〉H , for k ≥ 1, and n ∈ Z. Thus, for each j ≥ 1, {aj(n) =√
λj(C)ηj(n), n ∈ Z} defines a standard AR(1) process. Its Moving Average

representation of infinite order is given by

(2.9) aj(n) =

∞∑

k=0

[ρj ]
kεj(n − k), n ∈ Z.

Specifically, under Assumption A2,

E[aj(n)ap(n)] =

∞∑

k=0

∞∑

l=0

[ρj ]
k
[ρp]

lE[εj(n − k)εp(n − l)]

=

∞∑

k=0

∞∑

l=0

[ρj ]
k
[ρp]

lδk,lδj,p = 0, j 6= p,

(2.10)

E[aj(n)ap(n)] =

∞∑

k=0

σ2
j [ρj ]

2k, j = p,

where σ2
j = E[εj(n − k)]

2
= E[εj(0)]

2
.

From equation (2.10), under Assumptions A1–A2,

E‖X(n)‖2
H =

∞∑

j=1

E[aj(n)]
2

=

∞∑

j=1

σ2
j

∞∑

k=0

[ρj ]
2k

(2.11)

=

∞∑

j=1

σ2
j

[
1

1 − [ρj ]
2

]
=

∞∑

j=1

λj(C) < ∞,

with, as before,
∞∑

j=1

σ2
j = E‖ε(n)‖2

H < ∞.

Equation (2.11) leads to the identity

(2.12) λj(C) =

[
σ2

j

1 − ρ2
j

]
, j ≥ 1,

from which, we obtain

(2.13) ρk =

√
1 − σ2

k

λk(C)
, σ2

k = E [〈φk, εt〉H ]
2 , ∀t ∈ Z, k ≥ 1.

Under (2.12), equation (2.8) can also be rewritten as

(2.14) ηk(n) = ρkηk(n − 1) +

√
1 − ρ2

k

εk(n)

σk
, k ≥ 1.
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Assumption A2B. The sequences {σ2
k}k≥1 and {λk(C)}k≥1 satisfy

σ2
k

λk(C)
≤ 1, k ≥ 1, lim

k→∞

σ2
k

λk(C)
= 0.

(2.15)

σ2
k

λk(C)
= O(k−1−γ

), γ > 0, k → ∞.

Equation (2.15) means that {σ2
k}k≥1 and {λk(C)}k≥1 are both summable se-

quences, with faster decay to zero of the sequence {σ2
k}k≥1 than the sequence

{λk(C)}k≥1, leading, from equations (2.12) and (2.13), to the definition of {ρ2
k}k≥1

as a sequence with accumulation point at one.

Remark 2.2. Under Assumption A2B, Assumption A3 below holds.

For each k ≥ 1, from equations (2.7)–(2.9),

T∑

n=1

[ηk(n − 1)]
2

=
1

λk(C)

[
T∑

n=1

[εk(n − 1)]
2

+

T∑

n=1

∞∑

l=1

∞∑

p=1

[ρk]
l
[ρk]

pεk(n − 1 − l)εk(n − 1 − p)


(2.16)

=
1

λk(C)

[
T∑

n=1

[εk(n − 1)]
2
+ S(T, k)

]
,

where S(T, k) =
∑T

n=1

∑∞
l=1

∑∞
p=1[ρk]

l
[ρk]

pεk(n − 1 − l)εk(n − 1 − p). Hence,∑T
n=1[εk(n − 1)]

2
+ S(T, k) ≥ 0, for every T ≥ 1, and k ≥ 1.

Assumption A3. There exists a sequence of real-valued independent

random variables {M̃(k)}k≥1 such that

inf
T≥1

√√√√√

∣∣∣∣∣∣
S(T, k)

T
(∑T−1

n=1 [εk(n)]
2
+ [εk(0)]

2
)

∣∣∣∣∣∣

= inf
T≥1

√√√√√

∣∣∣∣∣∣

∑T
n=1

∑∞
l=1

∑∞
p=1[ρk]

l[ρk]
pεk(n − 1 − l)εk(n − 1 − p)

T
(∑T−1

n=1 [εk(n)]
2
+ [εk(0)]

2
)

∣∣∣∣∣∣
(2.17)

≥ [M̃(k)]
−1

a.s., with

∞∑

k=1

E[M̃(k)]
l < ∞, 1 ≤ l ≤ 4.

Remark 2.3. Note that the mean value of

T∑

n=1

∞∑

l=1

∞∑

p=1

[ρk]
l
[ρk]

pεk(n − 1 − l)εk(n − 1 − p)
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is of order
Tσ2

k

1−(ρk)2
, and the mean value of

T

(
T−1∑

n=1

[εk(n)]
2
+ [εk(0)]

2

)

is of order T (T − 1)σ2
k. Hence, for the almost surely boundedness of the in-

verse of

∣∣∣∣
S(T,k)

T(
PT−1

n=1
[εk(n)]2+[εk(0)]2)

∣∣∣∣, by a suitable sequence of random variables with

summable l-moments, for l = 1, 2, 3, 4, the eigenvalues of operator ρ must be close

to one but strictly less than one. As commented in Remark 2.2, from Assump-

tion A2B, this condition is satisfied in view of equation (2.13).

Assumption A4. E[ηj(m)ηk(n)] = δj,k, with, as before, δj,k denoting the

Kronecker delta function, for every m, n ∈ Z, and j, k ≥ 1.

Remark 2.4. Assumption A4 implies that the cross-covariance opera-

tor D admits a diagonal spectral decomposition in terms of the system of eigen-

vectors {φk}k≥1. Thus, under Assumption A4, the diagonal spectral decompo-

sitions (2.3) and (2.4) also hold.

The classical diagonal componentwise estimator ρ̂T of ρ considered here is

given by

ρ̂T =

∞∑

k=1

ρ̂k,T [φk ⊗ φk]

ρ̂k,T =

∑T
n=1 ak(n − 1)ak(n)
∑T

n=1[ak(n − 1)]2

(2.18)

=

∑T
n=1 〈Xn−1, φk〉H 〈Xn, φk〉H∑T

n=1 [〈Xn−1, φk〉H ]
2

=

∑T
n=1 Xn−1,kXn,k∑T

n=1 X2
n−1,k

, k ≥ 1.

From equations (2.7)–(2.8) and (2.12), for each k ≥ 1,

ρ̂k,T − ρk =

∑T
n=1 Xn−1,kXn,k∑T

n=1[Xn−1,k]
2

− ρk

=

∑T
n=1 ρk[ηk(n − 1)]

2
+ (ηk(n − 1)εk(n))/

√
λk(C)

∑T
n=1[ηk(n − 1)]2

− ρk

= ρk +

∑T
n=1 ηk(n − 1)εk(n)√

λk(C)
∑T

n=1[ηk(n − 1)]2
− ρk

=

∑T
n=1 ηk(n − 1)εk(n)√

σ2
k/(1 − ρ2

k)
∑T

n=1[ηk(n − 1)]2
(2.19)

=

√
1 − ρ2

k

∑T
n=1 ηk(n − 1)[εk(n)/σk]∑T

n=1[ηk(n − 1)]2
.(2.20)
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Remark 2.5. It is important to note that, for instance, unconditional

bases, like wavelets, provide the spectral diagonalization of an extensive family of

operators, including pseudodifferential operators, and in particular, Calderón–

Zygmund operators (see Kyriazis and Petrushev, 2001; Meyer and Coifman,

1997). Therefore, the diagonal spectral representations (2.3) and (2.4), in As-

sumption A2, hold for a wide class of autocovariance and cross-covariance oper-

ators, for example, in terms of wavelets. When the autocovariance and the cross-

covariance operators are related by a continuous function, the diagonal spectral

representations (2.3) and (2.4) are also satisfied (see Dautray and Lions, 1985,

pp. 119, 126 and 140). Assumption A2 has been considered, for example, in

Theorem 8.5, on pp. 215–216, and in Theorem 8.7, on p. 221, in Bosq (2000), to

establish strong consistency, although, in this book, a different setting of condi-

tions is assumed. Thus, Assumption A1 and A2 already have been used (e.g.,

in Bosq, 2000; Álvarez-Liébana, Bosq, Ruiz-Medina, 2017, and Ruiz-Medina and

Álvarez-Liébana, 2017), and Assumptions A2B, A3 and A4 appear in Ruiz-

Medina, Romano and Fernández-Pascual (2016). Assumptions A2B is needed

since the usual assumption on the Hilbert–Schmidt property of ρ, made by sev-

eral authors, is not considered here. At the same type, as commented before,

Assumptions A2B implies Assumption A3.

The following lemmas will be used in the derivation of the main results of

this paper, Theorems 4.1 and 4.2, obtained in the Gaussian ARH(1) context.

Lemma 2.1. Let Xi, i = 1, ..., n, be the values of a standard zero-mean

autoregressive process of order one (AR(1) process) at times i = 1, 2, ..., n, and

ρ̂n =

Pn
i=1

Xi−1XiPn
i=1

X 2

i−1

, with X0 representing the random initial condition. Assume that

|ρ| < 1, and that the innovation process is white noise. Then, as n → ∞,

(2.21)
√

n
ρ̂n − ρ√
1 − ρ2

−→
L

N (0, 1).

The proof of Lemma 2.1 can be found in Hamilton (1994, p. 216).

Lemma 2.2. Let X1 and X2 be two normal distributed random variables

having correlation ρX1X2
, and with means µ1 and µ2, and variances σ2

1 and σ2
2,

respectively. Then, the following identities hold:

E[X1X2] = µ1µ2 + ρX1X2
σ1σ2

(2.22)

Var(X1X2) = µ2
1σ

2
2 + µ2

2σ
2
1 + σ2

1σ
2
2 + 2ρX1X2

µ1µ2σ1σ2 + ρ2
X1X2

σ2
1σ

2
2

(see, for example, Aroian, 1947; Ware and Lad, 2003).
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Lemma 2.3. For each k ≥ 1, the following limit is obtained:

(2.23) lim
T→∞

TE[ρ̂k,T − ρk]
2

= 1 − ρ2
k, k ≥ 1

(see, for example, Bartlett, 1946).

3. BAYESIAN DIAGONAL COMPONENTWISE ESTIMATION

Let us now denote by R the functional random variable on the basic prob-

ability space (Ω,A, P ), characterized by the prior distribution for ρ. In our case,

we assume that R is of the form

(3.1) R(f)(g) =

∞∑

k=1

Rk 〈φk, f〉H 〈φk, g〉H , ∀f, g ∈ H, a.s.

where, for k ≥ 1, Rk is a real-valued random variable such that R(φj)(φk) =

δj,kRk, almost surely, for every j ≥ 1. In the following, Rk is assumed to follow a

beta distribution with shape parameters ak > 0 and bk > 0, i.e., Rk ∼ B(ak, bk),

for every k ≥ 1. We also assume that R is independent of the functional compo-

nents of the innovation process (εn, n ∈ Z), and that the random variables Rk,

k ≥ 1, are globally independent. That is, for each f, g ∈ H,

ϕf,g
R (t) = E

[
exp

(
it

∞∑

k=1

Rk 〈φk, f〉H 〈φk, g〉H

)]

(3.2)

=

∞∏

k=1

E [exp (itRk 〈φk, f〉H 〈φk, g〉H)] =

∞∏

k=1

ϕRk
(t 〈φk, f〉H 〈φk, g〉H) .

Thus,

ϕR(t) =

∞∏

k=1

ϕRk
(t (φk ⊗ φk)) ,

where the last identity is understood in the weak-sense, i.e., in the sense of equa-

tion (3.2). In the definition of R from {Rj , j ≥ 1}, we can then apply Kolmogorov

extension theorem under the condition

∞∑

j=1

ajbj

(aj + bj + 1)(aj + bj)
2

< ∞

(see, for example, Khoshnevisan, 2007).

As in the real-valued case (see Appendix A), considering bj > 1, for each

j ≥ 1, the Bayes estimator of ρ is defined by (see Case 2 in Appendix A)

(3.3) ρ̃n =

∞∑

j=1

ρ̃j,nφj ⊗ φj ,
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with, for every j ≥ 1,

ρ̃j,n =
1

2βj,n

[
(αj,n + βj,n) ±

√
(αj,n − βj,n)2 − 4βj,nσ2

j [2 − (aj + bj)]

]

=

[∑n
i=1 xi−1,jxi,j + x2

i−1,j

]

2
∑n

i=1 x2
i−1,j

(3.4)

±

√[∑n
i=1 xi−1,jxi,j − x2

i−1,j

]2
− 4σ2

j

[∑n
i=1 x2

i−1,j

]
[2 − (aj + bj)]

2
∑n

i=1 x2
i−1,j

,

where

(3.5) αj,n =

n∑

i=1

xi−1,jxi,j , βj,n =

n∑

i=1

x2
i−1,j , j ≥ 1, n ≥ 2.

4. ASYMPTOTIC EFFICIENCY AND EQUIVALENCE

In this section, sufficient conditions are derived to ensure the asymptotic

efficiency and equivalence of the diagonal componentwise estimators of ρ formu-

lated in the classical (see equation (2.18)), and in the bayesian (see equations

(3.3)–(3.4)) frameworks.

Theorem 4.1. Under conditions A1, A2, A2B, A3 and A4, assume

that the ARH(1) process X satisfies, for each j ≥ 1, and, for every T ≥ 2,

T∑

i=1

εj(i)Xi−1,j ≥ 0, a.s..(4.1)

That is, {εj(i), i ≥ 1} and {Xi−1,j , i ≥ 0} are almost surely positive empirically

correlated. In addition, for every j ≥ 1, the hyper-parameters aj and bj of the

beta prior distribution, β(aj , bj), are such that aj + bj ≥ 2. Then, the following

identities are obtained:

(4.2) lim
T→∞

TE
[
‖ρ̃−T − ρ‖2

S(H)

]
= lim

T→∞
TE

[
‖ρ̂T − ρ‖2

S(H)

]
=

∞∑

k=1

σ2
k

λk(C)
< ∞,

where ρ̂T is defined in equation (2.18), and ρ̃−T is defined from equations

(3.3)–(3.4), considering

(4.3) ρ̃−j,T =
1

2βj,T

[
(αj,T + βj,T ) −

√
(αj,T − βj,T )2 − 4βj,T σ2

j [2 − (aj + bj)]

]
,

with, as before, for each j ≥ 1, Xi,j = 〈Xi, φj〉H , i = 0, ..., T , and αj,T and βj,T

are given in (3.5), for every T ≥ 2.
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Proof: Under Assumptions A1–A2, from Remark B.1 and Corollary

B.1, in Appendix B, for each j ≥ 1, and for T sufficiently large,

(4.4) |ρ̂j,T | ≤ 1, a.s.

Also, under (4.1),

T∑

i=1

ρjX
2
i−1,j + εj(i)Xi−1 ≥

T∑

i=1

ρjX
2
i−1,j , a.s.,

which is equivalent to

(4.5) ρ̂j,T =

∑T
i=1 ρjX

2
i−1,j + εj(i)Xi−1

∑T
i=1 X2

i−1,j

≥ ρj , a.s.,

for every j ≥ 1.

From (4.5), to obtain the following a.s. inequality:

2|ρ̃−j,T − ρj | =

∣∣∣∣∣∣
ρ̂j,T − ρj + 1 − ρj −

√

(ρ̂j,T − 1)2 −
4σ2

j [2 − (aj + bj)]

βj,T

∣∣∣∣∣∣
(4.6)

≤ 2|ρ̂j,T − ρj |, a.s, j ≥ 1,

it is sufficient that

−ρ̂j,T + ρj ≤ 1 − ρj −
√

(ρ̂j,T − 1)2 −
4σ2

j [2 − (aj + bj)]

βj,T
≤ ρ̂j,T − ρj , a.s,

which is equivalent to

(4.7) 0 ≤ −2 − (aj + bj)

βj,T
≤ 4(ρ̂j,T − ρj)(1 − ρj)

βj,T

4σ2
j

, a.s..

That is, keeping in mind that σ2
j = λj(C)(1 − ρ2

j ) = λj(C)(1 + ρj)(1 − ρj), con-

dition (4.7) can also be expressed as

0 ≤ −2 − (aj + bj)

βj,T
≤ 4(ρ̂j,T − ρj)(1 − ρj)

βj,T

4λj(C)(1 + ρj)(1 − ρj)
, a.s.

i.e.,

(4.8) 0 ≤ −2 − (aj + bj)

βj,T
≤ (ρ̂j,T − ρj)

βj,T

λj(C)(1 + ρj)
, a.s,

for j ≥ 1. Since, for each j ≥ 1,
βj,T

λj(C)(1+ρj)
≥ βj,T

2λj(C) , it is sufficient that

(4.9) 0 ≤ −2 − (aj + bj)

βj,T
≤ (ρ̂j,T − ρj)

βj,T

2λj(C)
, a.s.
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to hold to ensure that inequality (4.6) is satisfied. Furthermore, from Remark B.1

and Corollary B.1, in Appendix B, for each j ≥ 1, βj,T → ∞, and

βj,T = O(T ), T → ∞, a.s., j ≥ 1.

Also, we have, from such remark and corollary, that

(ρ̂j,T − ρj) = O(1), T → ∞, a.s., j ≥ 1.

Thus, for each j ≥ 1, the upper bound, in (4.9), diverges as T → ∞, which means,

that, for T sufficiently large, inequality (4.6) holds, if aj + bj ≥ 2, for each j ≥ 1.

Now, from (4.6), under Assumption A3, for each j ≥ 1,

T |ρ̂j,T − ρj |2 ≤ M̃2
(j), a.s.

(4.10)

T |ρ̃−j,T − ρj |2 ≤ T |ρ̂j,T − ρj |2 ≤ M̃2
(j), a.s.

Furthermore, for each j ≥ 1, βj,T → ∞, and βj,T = O(T ), as T → ∞, al-

most surely. Hence,

−
4σ2

j [2 − (aj + bj)]

βj,T
−→ 0, T −→ ∞, a.s., ∀j ≥ 1.

From equation (4.3), we then have that, for each j ≥ 1,

lim
T→∞

∣∣∣ρ̃−j,T − ρ̂j,T

∣∣∣ = lim
T→∞

∣∣∣∣
1

2

[
(ρ̂j,T + 1) −

(
(ρ̂j,T − 1)

2

(4.11) − 4

βj,T
σ2

j [2 − (aj + bj)]

)1/2
]
− ρ̂j,T

∣∣∣∣∣ = lim
T→∞

|ρ̂j,T − ρ̂j,T | = 0,

almost surely. Thus, the almost surely convergence, when T → ∞, of ρ̃−j,T and

ρ̂j,T to the same limit is obtained, for every j ≥ 1.

From equation (4.10),

(4.12) T [ρ̃−j,T − ρ̂j,T ]
2 ≤ 2T

[(
ρ̃−j,T − ρj

)2
+ (ρ̂j,T − ρj)

2

]
≤ 4M̃2

(j), a.s.

Since E[M̃2
(j)] < ∞, applying Dominated Convergence Theorem, from equation

(4.12), considering (2.23) we obtain, for each j ≥ 1,

(4.13) lim
T→∞

TE[ρ̃−j,T − ρj ]
2

= lim
T→∞

TE[ρ̂j,T − ρj ]
2

= 1 − ρ2
j .

Under Assumptions A3, from (4.10), for each j ≥ 1, and for every T ≥ 1,

TE[ρ̂j,T − ρj ]
2 ≤ E[M̃2

(j)]

TE[ρ̃−j,T − ρj ]
2 ≤ E[M̃2

(j)]



Classical and Bayesian Componentwise Predictors 279

with
∑∞

j=1 E[M2
(j)] < ∞. Applying again Dominated Convergence Theorem

(with integration performed with respect to a counting measure), we obtain from

(4.13), keeping in mind relationship (2.13),

lim
T→∞

∞∑

j=1

TE[ρ̃−j,T − ρj ]
2

=

∞∑

j=1

lim
T→∞

TE[ρ̃−j,T − ρj ]
2

=

∞∑

j=1

lim
T→∞

TE[ρ̂j,T − ρj ]
2

=

∞∑

j=1

1 − ρ2
j(4.14)

=

∞∑

j=1

σ2
j

λj(C)
= lim

T→∞

∞∑

j=1

TE[ρ̂j,T − ρj ]
2 < ∞,

in view of equation (2.15) in Assumption A2B. That is, equation (4.2) holds.

Theorem 4.2. Under the conditions of Theorem 4.1,

lim
T→∞

TE
[
‖ρ̃−T (XT ) − ρ(XT )‖2

H

]
= lim

T→∞
TE

[
‖ρ̂T (XT ) − ρ(XT )‖2

H

]

=

∞∑

k=1

λk(C)(1 − ρ2
k).(4.15)

Here,

ρ̃−T (XT ) =

∞∑

j=1

ρ̃−j,T 〈XT , φj〉H φj ,

ρ̃−j,T =
1

2βj,T

[
(αj,T +βj,T ) −

√
(αj,T −βj,T )2 − 4βj,T σ2

j [2− (aj + bj)]

]
, j ≥ 1,

ρ̂T (XT ) =

∞∑

j=1

ρ̂j,T 〈XT , φj〉H φj , ρ̂j,T

∑T
i=1 Xi−1,jXi,j∑T

i=1 X2
i−1,j

, j ≥ 1,

ρ(XT ) =

∞∑

j=1

ρj 〈XT , φj〉H φj , ρj = ρ(φj)(φj), j ≥ 1.

Proof: From equation (4.11), for every j, k ≥ 1,

(4.16) [(ρ̃−j,T − ρ̂j,T )(ρ̃−k,T − ρ̂k,T )]
2 → 0, T → ∞, a.s.

In addition, from equation (4.12), for every j, k ≥ 1,

(4.17) [(ρ̃−j,T − ρ̂j,T )(ρ̃−k,T − ρ̂k,T )]
2 ≤ 16

M̃2
(k)M̃2

(j)

T 2
≤ 16M̃2

(k)M̃2
(j),
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with E[M̃2
(k)M̃2

(j)] = E[M̃2
(k)]E[M̃2

(j)] < ∞, under Assumption A3. Ap-

plying Dominated Convergence Theorem from (4.17), the almost surely conver-

gence in (4.16) implies the convergence in mean to zero, when T → ∞. Further-

more, under Assumption A3, for T ≥ 2,

∞∑

j=1

∞∑

k=1

T 2E[(ρ̃−j,T − ρ̂j,T )(ρ̃−k,T − ρ̂k,T )]
2

(4.18) ≤ 16




∞∑

j,k; j 6=k

E[M̃2
(j)]E[M̃2

(k)]


+

[
∞∑

k=1

E[M̃4
(k)]

]
< ∞.

From (4.18), for every T ≥ 2,

T 2E‖ρ̃−T − ρ̂T ‖4
S(H) =

∞∑

j=1

∞∑

k=1

T 2E[(ρ̃−j,T − ρ̂j,T )(ρ̃−k,T − ρ̂k,T )]
2

(4.19)

≤ 16




∞∑

j,k; j 6=k

E[M̃2
(j)]E[M̃2

(k)]


+

[
∞∑

k=1

E[M̃4
(k)]

]
< ∞.

Equation (4.19) means that the rate of convergence to zero, as T → ∞,

of the functional sequence {ρ̃−T − ρ̂T }T≥2 in the space L4
S(H)(Ω,A, P ) is of order

T−2
.

From definition of the norm in the space bounded linear operators, applying

Cauchy–Schwarz inequality, we obtain

E‖ρ̃−T (XT ) − ρ̂T (XT )‖2
H ≤ E

[
‖ρ̃−T − ρ̂T ‖2

L(H)‖XT ‖2
H

]

≤
√

E
[
‖ρ̃−T − ρ̂T ‖4

L(H)

]√
E
[
‖XT ‖4

H

]
(4.20)

≤
√

E
[
‖ρ̃−T − ρ̂T ‖4

S(H)

]√
E
[
‖XT ‖4

H

]
.

From the orthogonal expansion (2.5) of XT , in terms of the independent real-

valued standard Gaussian random variables {ηk(T )}k≥1, we have

E
[
‖XT ‖4

H

]
=

∞∑

j=1

∞∑

k=1

λj(C)λk(C)E[ηj(T )ηk(T )]
2

=

∞∑

j=1

∞∑

k=1

λj(C)λk(C)3δj,k

(4.21)

= 3

∞∑

k=1

λ2
k(C) < ∞.

From equations (4.19)–(4.21),

E‖ρ̃−T (XT ) − ρ̂T (XT )‖2
H = O

(
1

T

)
, T → ∞.
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Thus, ρ̃−T (XT ) and ρ̂T (XT ) have the same limit in the space L2
H(Ω,A, P ).

We now prove the approximation by trace
(
C(I − ρ2

)
)

of the limit, in equa-

tion (4.15). Consider

E‖ρ̂T (XT ) − ρ(XT )‖2
H − trace(C(I − ρ2

))

(4.22)
=

∞∑

k=1

E[(ρ̂k,T − ρk)
2η2

k(T )]λk(C) − λk(C)(1 − ρ2
k),

where trace(C(I − ρ2
)) =

∑∞
k=1 λk(C)(1 − ρ2

k). From Lemmas 2.1 and 2.2 (see

last identity in equation (2.22)), for each k ≥ 1, and for T sufficiently large,

E
[
(ρ̂k,T − ρk)

2η2
k(T )

]
≃ Var(ρ̂k,T − ρk)Var(ηk)

(4.23)
× (1 + 2[Corr(ρ̂k,T − ρk, ηk(T ))]

2
).

Under Assumption A3, from equations (2.17)–(2.20), for every k ≥ 1,

(4.24) TVar(ρ̂k,T − ρk) ≤ (1 − ρ2
k)E[M̃2

(k)]

From equations (4.22)–(4.24),

TE‖ρ̂T (XT ) − ρ(XT )‖2
H − trace(C(I − ρ2

))

≤
∞∑

k=1

λk(C)(1 − ρ2
k)E[M̃2

(k)]

(4.25) ×
[
1 + 2[Corr(ρ̂k,T − ρk, ηk(T ))]

2
]
− λk(C)(1 − ρ2

k)

≤
∞∑

k=1

3λk(C)E[M̃2
(k)] −

∞∑

k=1

λk(C)(1 − ρ2
k) < ∞,

since
∑∞

k=1 λk(C)(1− ρ2
k) ≤

∑∞
k=1 λk(C) < ∞, by the trace property of C. Here,

we have applied Cauchy–Schwartz inequality to obtain, for a certain constant

L > 0,

∞∑

k=1

3λk(C)E[M̃2
(k)] ≤ 3

√√√√
∞∑

k=1

λ2
k(C)

∞∑

k=1

[
E[M̃2(k)]

]2

(4.26)

≤ 3L

√√√√
∞∑

k=1

λk(C)

∞∑

k=1

E[M̃2(k)] < ∞,

from the trace property of C, and since
∑∞

k=1 E[M̃2
(k)] < ∞, under Assump-

tion A3. From equations (2.23) and (4.25), one can get, applying Dominated
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Convergence Theorem,

lim
T→∞

TE‖ρ̂T (XT ) − ρ(XT )‖2
H =

∞∑

k=1

λk(C) lim
T→∞

TE [ρ̂k,T − ρk]
2

× lim
T→∞

[
1 + [Corr(ρ̂k,T − ρk, ηk(T ))]

2
]

(4.27)

=

∞∑

k=1

λk(C) lim
T→∞

TE [ρ̂k,T − ρk]
2

=

∞∑

k=1

λk(C)(1 − ρ2
k),

where we have considered that

lim
T→∞

|Cov(ρ̂k,T − ρk, ηk(T ))|2 ≤ lim
T→∞

E[ρ̂k,T − ρk]
2E[ηk(T )]

2

= lim
T→∞

1 − ρ2
k

T
= 0.

5. NUMERICAL EXAMPLES

This section illustrates the theoretical results derived on asymptotic effi-

ciency and equivalence of the proposed classical and bayesian diagonal compo-

nentwise estimators of the autocorrelation operator, as well as of the associated

ARH(1) plug-in predictors. Under the conditions assumed in Theorem 4.1, three

examples of standard zero-mean Gaussian ARH(1) processes are generated, re-

spectively corresponding to consider different rates of convergence to zero of the

eigenvalues of the autocovariance operator. The truncation order kT in Examples

1 and 2 is fixed, i.e., it does not depend on the sample size T (see equations (5.2)

and (5.3) below). While in Example 3, kT is selected such that

(5.1) lim
T→∞

CkT

√
T = ∞.

Specifically, in the first two examples, the choice of kT is driven looking for a com-

promise between the sample size and the number of parameters to be estimated.

With this aim the value kT = 5 is fixed, independently of T . This is the number

of parameters that can be estimated in an efficient way, from most of the values of

the sample size T studied. In Example 3, the truncation parameter kT is defined

as a fractional power of the sample size. Note that Example 3 corresponds to the

fastest decay velocity of the eigenvalues of the autocovariance operator. Hence,

the lowest truncation order for a given sample size must be selected according to

the truncation rule (5.1).
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The generation of N = 1000 realizations of the functional values Xt, t =

0, 1, ..., T , for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000, denoting as before

the sample size, is performed, for each one of the ARH(1) processes, defined in

the three examples below. Based on those generations, and on the sample sizes

studied, the truncated empirical functional mean-square errors of the classical

and Bayes diagonal componentwise parameter estimators of the autocorrelation

operator ρ are computed as follows:

EFMSEρT
=

1

N

N∑

ω=1

kn∑

j=1

(
ρω

j,T − ρj

)2
,(5.2)

EFMSEρT (XT ) =
1

N

N∑

ω=1

kn∑

j=1

(
ρω

j,T − ρj

)2
X2

T,j ,(5.3)

where ρω
j,T can be the classical ρ̂j,T or the Bayes ρ̃j,T diagonal componentwise

estimator of the autocorrelation operator, and
ω

denotes the sample point ω ∈ Ω

associated with each one of the N = 1000 realizations generated of each functional

value of the ARH(1) process X.

On the other hand, as assumed in the previous section, ρk ∼ B (ak, bk),

with ak + bk ≥ 2, ak > 0 and bk > 1, for each k ≥ 1. Thus, parameters (ak, bk)

are defined as follows:

(5.4) bk = 1 + 1/100, ak = 2
k, k ≥ 1,

where

E [ρk] =
ak

ak + bk
→ 1,

k → ∞,(5.5)

V [ρk] =
akbk

(ak + bk +1) (ak + bk)
2 = O

(
1

22k

)
,

with
{
ρ2

k, k ≥ 1
}

being a random sequence such that its elements tend to be

concentrated around point one, when k → ∞. From (5.5), since

(5.6) σ2
k = λk (C)

(
1 − ρ2

k

)
, k ≥ 1,

Assumption A2B is satisfied. In addition, Condition 4.1 is verified in the

generations performed in the Gaussian framework.
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5.1. Example 1

Let us assume that the eigenvalues of the autocovariance operator of the

ARH(1) process X are given by

λk(C) =
1

k3/2
, k ≥ 1.

Thus, C is a strictly positive and trace operator, where
{
ρ2

k, k ≥ 1
}

and
{
σ2

k, k ≥ 1
}

are generated from (5.4)–(5.6).

Tables 1 and 2 display the values of the empirical functional mean-square

errors, given in (5.2)–(5.3), associated with ρ̂T and ρ̃−T , and with the corresponding

ARH(1) plug-in predictors, with, as before,

(5.7) T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000,

considering kT = 5. The respective graphical representations are displayed in

Figures 1–2, where, for comparative purposes, the values of the curve 1/T are

also drawn for the finite sample sizes (5.7).

Table 1: Example 1. Empirical functional mean-square errors EFMSEρ
T
.

Sample size Classical estimator bρT Bayes estimator eρ−

T

250 2.13 e−003 2.23 e−003
500 1.24 e−003 1.04 e−003
750 8.44 e−004 7.13 e−004

1000 6.91 e−004 5.84 e−004
1250 5.97 e−004 4.72 e−004
1500 4.89 e−004 3.98 e−004
1750 4.13 e−004 3.06 e−004
2000 3.61 e−004 2.59 e−004

Table 2: Example 1. Empirical functional mean-square errors EFMSEρ
T

(XT ).

Sample size Classical predictor bρT (XT ) Bayes predictor eρ−

T (XT )

250 1.22 e−003 1.42 e−003
500 6.08 e−004 6.36 e−004
750 3.24 e−004 4.06 e−004

1000 3.05 e−004 2.77 e−004
1250 2.74 e−004 2.39 e−004
1500 2.07 e−004 1.78 e−004
1750 1.71 e−004 1.48 e−004
2000 1.64 e−004 1.42 e−004
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Figure 1: Example 1. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) component-

wise ARH(1) parameter estimators, with kT = 5, for N = 1000

replications of the ARH(1) values, against the curve 1/T (red

dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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Figure 2: Example 1. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) componen-

twise ARH(1) plug-in predictors, with kT = 5, for N = 1000

replications of the ARH(1) values, against the curve 1/T (red

dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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5.2. Example 2

In this example, a bit slower decay velocity, than in Example 1, of the

eigenvalues of the autocovariance operator of the ARH(1) process is considered.

Specifically,

λk(C) =
1

k1+1/10
, k ≥ 1.

Thus, C is a strictly positive self-adjoint trace operator, where
{
ρ2

k, k ≥ 1
}

and{
σ2

k, k ≥ 1
}

are generated, as before, from (5.4)–(5.6).

Tables 3 and 4 show the values of the empirical functional mean square

errors, associated with ρ̂T and ρ̃−T , and with the corresponding ARH(1) plug-

in predictors, respectively. Figures 3–4 provide the graphical representations in

comparison with the values of the curve 1/T for T given in (5.7), with, as before,

kT = 5.

Table 3: Example 2. Empirical functional mean-square errors EFMSEρ
T
.

Sample size Classical estimator bρT Bayes estimator eρ−

T

250 4.18 e−003 6.09 e−003
500 2.20 e−003 2.30 e−003
750 1.52 e−003 1.39 e−003

1000 1.14 e−003 1.00 e−003
1250 9.55 e−004 7.97 e−004
1500 7.97 e−004 6.64 e−004
1750 7.01 e−004 5.37 e−004
2000 6.22 e−004 5.00 e−004

Table 4: Example 2. Empirical functional mean-square errors EFMSEρ
T

(XT ).

Sample size Classical predictor bρT (XT ) Bayes predictor eρ−

T (XT )

250 3.25 e−003 3.18 e−003
500 1.59 e−003 1.40 e−003
750 9.47 e−004 8.19 e−004

1000 7.89 e−004 6.88 e−004
1250 7.24 e−004 6.10 e−004
1500 5.53 e−004 4.77 e−004
1750 5.31 e−004 4.49 e−004
2000 4.61 e−004 4.00 e−004
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Figure 3: Example 2. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) component-

wise ARH(1) parameter estimators, with kT = 5, for N = 1000

replications of the ARH(1) values, against the curve 1/T (red

dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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Figure 4: Example 2. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) componen-

twise ARH(1) plug-in predictors, with kT = 5, for N = 1000

replications of the ARH(1) values, against the curve 1/T (red

dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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5.3. Example 3

It is well-known that the singularity of the inverse of the autocovariance

operator C increases, when the rate of convergence to zero of the eigenvalues of

C indicates a faster decay velocity, as in this example. Specifically, here,

(5.8) λk(C) =
1

k2
, k ≥ 1.

As before,
{
ρ2

k, k ≥ 1
}

and
{
σ2

k, k ≥ 1
}

are generated from (5.4)–(5.6). The

truncation order kT satisfies

(5.9) kT = ⌈T 1/α⌉, lim
T→∞

kT = ∞, lim
T→∞

√
TCkT

= ∞

(see also the simulation study undertaken in Álvarez-Liébana, Bosq and Ruiz-

Medina, 2017, for the case of ρ being a Hilbert–Schmidt operator). In particular,

(5.9) holds for
1
2 − 2

α > 0. Thus, α > 4, and we consider α = 4.1, i.e., kT =

⌈T 1/4.1⌉.

Table 5: Example 3. Empirical functional mean-square errors EFMSEρ
T
.

Sample size kn Classical estimator bρT Bayes estimator eρ−

T

250 3 1.73 e−003 1.52 e−003
500 4 9.72 e−004 1.01 e−003
750 5 6.98 e−004 7.10 e−004

1000 5 5.63 e−004 4.35 e−004
1250 5 4.49 e−004 2.84 e−004
1500 5 3.94 e−004 2.24 e−004
1750 6 3.31 e−004 1.84 e−004
2000 7 3.05 e−004 1.70 e−004

Table 6: Example 3. Empirical functional mean-square errors EFMSEρ
T

(XT ).

Sample size kn Classical predictor bρT (XT ) Bayes predictor eρ−

T (XT )

250 3 1.92 e−003 1.31 e−003
500 4 8.24 e−004 5.75 e−004
750 5 5.60 e−004 4.08 e−004

1000 5 3.52 e−004 2.54 e−004
1250 5 2.62 e−004 1.45 e−004
1500 5 2.00 e−004 1.02 e−004
1750 6 1.37 e−004 9.57 e−005
2000 6 1.13 e−004 8.55 e−005
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Tables 5–6 show the empirical functional mean square errors associated with

ρ̂T and ρ̃−T , and with the corresponding ARH(1) plug-in predictors, respectively.

As before, Figures 5 and 6 provide the graphical representations, and the values of

the curve 1/T , for T in (5.7), with the aim of illustrating the rate of convergence

to zero of the truncated empirical functional mean quadratic errors.
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Figure 5: Example 3. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) componentwise

ARH(1) parameters estimators, with kT = ⌈T 1/α⌉, α = 4.1, for

N = 1000 replications of the ARH(1) values, against the curve 1/T
(red dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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Figure 6: Example 3. Empirical functional mean-square errors of classi-

cal (blue circle line), and Bayes (green cross line) component-

wise ARH(1) plug-in predictors, with kT = ⌈T 1/α⌉, α = 4.1, for

N = 1000 replications of the ARH(1) values, against the curve 1/T
(red dot line), for T = 250, 500, 750, 1000, 1250, 1500, 1750, 2000.
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In Examples 1 and 2, where a common fixed truncation order is considered,

we can observe that the biggest values of the empirical functional mean-square

errors are located at the smallest sample sizes, for which the number kT = 5

of parameters to be estimated is too large, with a slightly worse performance

for those sample sizes, in Example 2, where a slower decay velocity, than in

Example 1, of the eigenvalues of the autocovariance operator C is considered.

Note that, on the other hand, when a slower decay velocity of the eigenvalues

of C is given, a larger truncation order is required to explain a given percentage

of the functional variance. For the fastest rate of convergence to zero of the

eigenvalues of the autocovariance operator C, in Example 3, to compensate the

singularity of the inverse covariance operator C−1
, a suitable truncation order kT

is fitted, depending on the sample size T , obtaining a slightly better performance

than in the previous cases, where a fixed truncation order is studied.

6. FINAL COMMENTS

This paper addresses the case where the eigenvectors of C are known, in

relation to the asymptotic efficiency and equivalence of ρ̂j,T and ρ̃−j,T , and the

associated plug-in predictors. However, as shown in the simulation study under-

taken in Álvarez-Liébana, Bosq and Ruiz-Medina (2017), a similar performance

is obtained in the case where the eigenvectors of C are unknown (see also Bosq,

2000, in relation to the asymptotic properties of the empirical eigenvectors of C).

In the cited references in the ARH(1) framework, the autocorrelation op-

erator is usually assumed to belong to the Hilbert–Schmidt class. Here, in the

absence of the compactness assumption (in particular, of the Hilbert–Schmidt

assumption) on the autocorrelation operator ρ, singular autocorrelation kernels

can be considered. As commented in the Introduction, the singularity of ρ is com-

pensated by the regularity of the autocovariance kernel of the innovation process,

as reflected in Assumption A2B.

Theorem 4.1 establishes sufficient conditions for the asymptotic efficiency

and equivalence of the proposed classical and Bayes diagonal componentwise pa-

rameter estimators of ρ, as well as of the associated ARH(1) plug-in predictors

(see Theorem 4.2). The simulation study illustrates the fact that the truncation

order kT should be selected according to the rate of convergence to zero of the

eigenvalues of the autocovariance operator, and depending on the sample size T .

Although, a fixed truncation order, independently of T , has also been tested in

Examples 1 and 2, where a compromise between the rate of convergence to zero

of the eigenvalues, and the rate of increasing of the sample sizes is found.
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APPENDIX A — Bayesian estimation of real-valued autoregressive

processes of order one

In this section, we consider the Beta-prior-based bayesian estimation of the

autocorrelation coefficient ρ in a standard AR(1) process. Namely, the gener-

alized maximum likelihood estimator of such a parameter is computed, when a

beta prior is assumed for ρ. In the ARH(1) framework, we have adopted this es-

timation procedure in the approximation of the diagonal coefficients {ρk, k ≥ 1}
of operator ρ with respect to {φk ⊗φk, k ≥ 1}, in a bayesian componentwise con-

text. Note that we also denote by ρ the autocorrelation coefficient of an AR(1)

process, since there is no place for confusion here.

Let {Xn, n ∈ Z} be an AR(1) process satisfying

(A.1) Xn = ρXn−1 + εn, n ∈ Z,

where 0 < ρ < 1, and {εn, n ∈ Z} is a real-valued Gaussian white noise, i.e.,

εn ∼ N (0, σ2
), n ∈ Z, are independent Gaussian random variables, with σ > 0.

Here, we will use the conditional likelihood, and assume that (x1, ..., xn) are

observed for n sufficiently large to ensure that the effect of the random initial

condition is negligible. A beta distribution with shape parameters a > 0 and

b > 0 is considered as a-priori distribution on ρ, i.e., ρ ∼ B(a, b). Hence, the

distribution of (x1, ..., xn, ρ) has density

L̃ =
1

(σ
√

2π)n
exp

(
− 1

2σ2

n∑

i=1

(xi − ρxi−1)
2

)
ρa−1

(1 − ρ)
b−1 I{0<ρ<1}

B(a, b)
,

where

B(a, b) =
Γ(a)Γ(b)

Γ(a + b)

is the beta function.

We first compute the solution to the equation

0 =
∂ log L̃

∂ρ
=

∂

∂ρ

[
− 1

2σ2

n∑

i=1

(xi − ρxi−1)
2
+ (a − 1) log ρ + (b − 1) log(1 − ρ)

]

= − 1

2σ2

n∑

i=1

(−2xi−1(xi − ρxi−1)) +
a − 1

ρ
− b − 1

1 − ρ
(A.2)

=
αn

σ2
− ρ

σ2
βn +

a − 1

ρ
− b − 1

1 − ρ
,

where αn =
∑n

i=1 xi−1xi and βn =
∑n

i=1 x2
i−1. Thus, the following equation must

be solved:

0 =
ρ(1 − ρ)αn

σ2
− ρ2

(1 − ρ)

σ2
βn + (a − 1)(1 − ρ) − ρ(b − 1)

0 =
βn

σ2
ρ3 − αn + βn

σ2
ρ2

+

(αn

σ2
− [a + b] + 2

)
ρ + (a − 1).
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Case 1. Considering a = b = 1, and σ2
= 1, we obtain the solution

ρ̃n =

∑n
i=1 xi−1xi∑n
i=1 x2

i−1

.

Case 2. The general case where b > 1 is more intricate, since the solutions

are ρ̃n = 0, and

(A.3)

ρ̃n =
1

2βn

[
(αn + βn) ±

√
(αn − βn)2 − 4βnσ2[2 − (a + b)]

]

=

[∑n
i=1 xi−1xi + x2

i−1

]
±
√[∑n

i=1 xi−1xi − x2
i−1

]2 − 4σ2
[∑n

i=1 x2
i−1

]
[2 − (a + b)]

2
∑n

i=1 x2
i−1

.

Case 3. For σ2
= a = 1, we have

(A.4)

ρ̃n =
1

2βn

[
(αn + βn) ±

√
(αn − βn)2 − 4βn(1 − b)

]

=
1

2
∑n

i=1 x2
i−1

[
n∑

i=1

xi−1xi + x2
i−1

]
±

√√√√
[

n∑

i=1

xi−1xi − x2
i−1

]2

− 4

[
n∑

i=1

x2
i−1

]
(1 − b).
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APPENDIX B — Strong-ergodic AR(1) processes

This section collects some strong-ergodicity results applied in this paper, for

real-valued weak-dependent random sequences. In particular, their application

to the AR(1) case is considered.

A real-valued stationary process {Yn}n∈Z
is strongly-ergodic (or ergodic in

an almost surely sense), with respect to E {f (Y0, ..., Yn−1)} if, as n → ∞,

(B.1)
1

n − k

n−1−k∑

i=0

f (Yi, ..., Yi+k) →a.s.
E {f (Y0, ..., Yn−1)} , k ≥ 0.

In particular, the following lemma provides sufficient condition to get the

strong-ergodicity for all second-order moments (see, for example, Theorem 3.5.8

in Stout, 1974, and the results presented on p. 495, in Billingsley, 1995).

Lemma B.1. Let {ε̃n}n∈Z
be an i.i.d. sequence of real-valued random

variables. If f : R
∞ −→ R is a measurable function, then

(B.2) Yn = f (ε̃n, ε̃n−1, ...) , n ∈ Z,

is a stationary and strongly-ergodic process for all second-order moments.

Lemma B.1 is now applied to the invertible AR(1) case, when the innovation

process is white noise.

Remark B.1. If {Yn}n∈Z
is a real-valued zero-mean stationary AR(1)

process

(B.3) Yn = ρYn−1 + ε̃n, ρ ∈ R, |ρ| < 1, n ∈ Z,

where {ε̃n}n∈Z
is strong white noise, we can define the measurable (even contin-

uous) function

(B.4) f (a0, a1, ...) =

∞∑

k=0

ρkak,

such that, from Lemma B.1 and for each n ∈ Z,

(B.5) Yn =

∞∑

k=0

ρkε̃n−k = f (ε̃n, ε̃n−1, ...) ,

is a stationary and strongly-ergodic process for all second-order moments.
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In the results derived in this paper, Remark B.1 is applied, for each j ≥ 1, to

the real-valued zero-mean stationary AR(1) processes
{
Xn,j = 〈Xn, φj〉H , n ∈ Z

}
,

with {Xn, n ∈ Z} now representing an ARH(1) process.

Corollary B.1. Under Assumptions A1–A2, for each j ≥1, let us consider

the real-valued zero-mean stationary AR(1) process
{
Xn,j = 〈Xn, φj〉H , n ∈ Z

}
,

such that, for each n ∈ Z

(B.6) Xn,j = ρjXn−1,j + εn,j , ρj ∈ R, |ρj | < 1,

Here, {εn,j}n∈Z
is a real-valued strong white noise, for any j ≥ 1. Thus, for each

j ≥ 1, {Xn,j}n∈Z
is a stationary and strongly-ergodic process for all second-order

moments. In particular, for any j ≥ 1, as n → ∞,

Ĉn,j =
1

n

n∑

i=1

X2
i−1,j →a.s. Cj = E

{
X2

i−1,j

}
, i ≥ 1(B.7)

D̂n,j =
1

n − 1

n∑

i=1

Xi−1,jXi,j →a.s. Dj = E {Xi−1,jXi,j} , i ≥ 1.(B.8)
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[23] Ruiz-Medina, M.D. and Álvarez-Liébana, J. (2017). Consistent diagonal

componentwise ARH(1) prediction. (Submitted).

[24] Ruiz-Medina, M.D.; Romano, E. and Fernández-Pascual, R. (2016). Plug-

in prediction intervals for a special class of standard ARH(1) processes, Journal

of Multivariate Analysis, 146, 138–150.

[25] Stout, W.F. (1974). Almost sure convergence, Academic, New York–London.

[26] Ware, R. and Lad, F. (2003). Approximating the distribution for sums of prod-

uct of normal variables, Research-Paper 2003-15, Department of Mathematics and

Statistics (University of Canterbury – New Zealand).



REVSTAT – Statistical Journal

Volume 17, Number 3, July 2019, 297–320

ON WEIGHTED KULLBACK–LEIBLER

DIVERGENCE FOR DOUBLY TRUNCATED

RANDOM VARIABLES

Authors: Rajesh Moharana

– Department of Mathematics, National Institute of Technology Rourkela,

Rourkela-769008, India

rajeshmoharana31@gmail.com

Suchandan Kayal

– Department of Mathematics, National Institute of Technology Rourkela,

Rourkela-769008, India

suchandan.kayal@gmail.com, kayals@nitrkl.ac.in

Received: July 2016 Revised: January 2017 Accepted: March 2017

Abstract:

• In this communication, we study doubly truncated weighted Kullback–Leibler diver-

gence (KLD) between two nonnegative random variables. The proposed measure is a

generalization of the dynamic weighted KLD introduced by Yasaei Sekeh et al. (2013).

In reliability theory and survival analysis, it plays a significant role to study several

aspects of a system when lifetimes fall in a time interval. It is showed that under

some conditions, the proposed measure determines the distribution function uniquely.

Further, characterization theorems for various lifetime distributions are proved.

The effect of the monotone transformation on the proposed measure is studied.

Some inequalities and bounds in terms of useful measures are obtained and finally,

few applications are provided.

Key-Words:

• weighted Kullback–Leibler divergence; generalized failure rate; weighted geometric

vitality function; proportional (reversed) hazard model; likelihood ratio order.

AMS Subject Classification:

• 94A17, 62E10, 62N05, 60E15.



298 Rajesh Moharana and Suchandan Kayal



On Doubly Truncated Weighted Kullback–Leibler Divergence 299

1. INTRODUCTION

Kullback–Leibler divergence (see Kullback and Leibler, 1951) is an impor-

tant measure in information theory, which has proven to be useful in reliability

analysis and other related fields. It measures similarity (closeness) between two

statistical distributions. To be specific, let X and Y be two nonnegative abso-

lutely continuous random variables associated with probability density functions

(pdf) f and g, and cumulative distribution functions (cdf) F and G, respectively.

Then the KLD between f and g is given by

DKL(X||Y ) =

∫ +∞

0
f(x) ln

(f(x)

g(x)

)
dx = Ef

(
ln

(f(X)

g(X)

))
,(1.1)

where “ln” stands for the natural logarithm. We remark that DKL(X||Y ) is

nonnegative, not symmetric in f and g, zero if the distributions match exactly.

It is scale invariant, that is, for two nonnegative random variables Z1 = aX and

Z2 = aY with a > 0, we have DKL(X||Y ) = DKL(Z1||Z2). Note that DKL(X||Y )

given by (1.1), which is a special case of Csiszar’s φ-divergence measure can be

viewed as a measure of the information loss in the fitted model relative to that

in the reference model. For some recent development on KLD, we refer to Kasza

and Solomon (2015) and Sankaran et al. (2016).

In recent past, there have been considerable interest to enlarge the concept

of uncertainty by introducing nonnegative weight function. Belis and Guiasu

(1968) first proposed the notion of (discrete) weighted entropy. It takes two kind

of uncertainty into consideration. One of them is related to objective proba-

bility and other is related to utility. In analogy to Belis and Guiasu (1968),

Di Crescenzo and Longobardi (2006) considered the weighted differential en-

tropy for a nonnegative absolutely continuous random variable X as Sw
(X) =

−
∫ +∞
0 xf(x) ln f(x)dx. It is shift dependent, though the differential entropy

S(X) = −
∫ +∞
0 f(x) ln f(x)dx is not. Besides weighted differential entropy, sev-

eral authors introduced and studied some other weighted information measures.

In this direction, we refer to Suhov and Yasaei Sekeh (2015), Mirali et al. (2017),

Nourbakhsh et al. (2016), and Rajesh et al. (2017).

Recently, based on the concept of weighted differential entropy, Yasaei

Sekeh et al. (2013) considered weighted KLD as

Dw
KL(X||Y ) =

∫ +∞

0
xf(x) ln

(f(x)

g(x)

)
dx = Ef

(
X ln

(f(X)

g(X)

))
,(1.2)

which takes into account the qualitative characteristic related to utility. To illus-

trate the importance of the weighted KLD, we consider the following example.

Example 1.1. Let X1 and Y1 be two nonnegative absolutely continuous

random variables with pdfs f1(x) = 2x, 0 < x < 1 and g1(x) = 2(1− x), 0 < x < 1,
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respectively. We consider another random variables X2 and Y2 with pdfs f2(x) =

x/2, 0 < x < 2 and g2(x) = (2−x)/2, 0 < x < 2, respectively. From (1.1) we obtain

DKL(X1||Y1) =1 and DKL(X2||Y2) =1. Also, from (1.2) we get Dw
KL(X1||Y1) =1

and Dw
KL(X2||Y2) = 2. Thus, from the objective probability point of view, KLD

measures are same. But, when we take the qualitative characteristics into con-

sideration, they differ. Here, Dw
KL(X1||Y1) < Dw

KL(X2||Y2).

Note that when the weight function “x” equals to 1, Dw
KL(X||Y ) coincides

with the standard KLD given by (1.1). Yasaei Sekeh et al. (2013) considered

weighted KLD between two residual (truncated from left) lifetime distributions

and two past (truncated from right) lifetime distributions. But there exist several

situations in real life, where statistical data are not only truncated from left or

right side, but also from both sides. When data are truncated from left and right

sides, we call it as doubly truncated. Doubly truncated data play a central role in

various statistical analysis of survival data. Doubly truncated failure time occurs

if the failure of an individual occurs within a certain interval. In medical science,

the induction time data in AIDS are doubly truncated, since HIV was unknown

to us before the year 1982. Also, during a survival experiment, sometimes it is

required to collect data after an engineering system starts operating and before

it fails. Let X denote the lifetime of a system. Then the conditional random

variable (X|x < X < y) is known as doubly truncated lifetime. That is, event

time of an individual lies within a certain time interval (x, y) is only observed.

Therefore, an individual is not observed if it’s event time does not fall in this

predefined interval. Hence, information on the subject outside this interval is not

available to the investigator. Misagh and Yari (2012) considered doubly truncated

(truncated from both sides) KLD as

DKL(X||Y ; t1, t2) =

∫ t2

t1

f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx,(1.3)

where ∆F = F (t2)−F (t1), ∆G = G(t2)−G(t1) and (t1, t2) ∈ D = {(x, y)|F (x) <

F (y) and G(x) < G(y)}. In this paper, we consider doubly truncated weighted

KLD between f and g, which is given by

Dw
KL(X||Y ; t1, t2) =

∫ t2

t1

x
f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx.(1.4)

Note that Dw
KL(X||Y ; t1, t2) is a generalization of the measures considered by

Yasaei Sekeh et al. (2013) in the sense that it reduces to the weighted KLD

between two residual lives and two past lives, when t2 tends to +∞ and t1 tends

to 0, respectively. Mathematically,

lim
t2→+∞

Dw
KL(X||Y ; t1, t2) =

∫ +∞

t1

x
f(x)

F̄ (t1)
ln

(f(x)/F̄ (t1)

g(x)/Ḡ(t1)

)
dx

and

lim
t1→0

Dw
KL(X||Y ; t1, t2) =

∫ t2

0
x

f(x)

F (t2)
ln

(f(x)/F (t2)

g(x)/G(t2)

)
dx.
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The doubly truncated weighted KLD given by (1.4) may take negative values,

though the doubly truncated KLD always take nonnegative values. The expres-

sion given by (1.4) measures the weighted discrepancy between two systems with

lifetimes X and Y , which have survived up to time t1 and have seen to be down

at time t2. In fact, (1.4) can be used to measure divergence between two distribu-

tions having different supports. We consider the following example to illustrate

this.

Example 1.2. Let X and Y be two nonnegative absolutely continuous

random variables with pdfs f(x) =
3
4(2x + x2

), 0 < x < 1 and g(x) =
1
8(1 + 3y),

0 < y < 2, respectively. As supports of the distributions are different, therefore,

the expression given by (1.1) can not be used to compute the divergence between

f and g. In this situation, one may use (1.4) for finding divergence. In particular,

Dw
KL(X||Y ; 0.1, 0.5) = 0.033427 and Dw

KL(X||Y ; 0.3, 0.9) = 0.014291.

Again, the doubly truncated weighted KLD given by (1.4) can be expressed

in terms of the doubly truncated weighted Shannon entropy and the doubly trun-

cated weighted inaccuracy as

Dw
KL(X||Y ; t1, t2) = −Sw

(X; t1, t2) + Iw
(X||Y ; t1, t2),(1.5)

where Sw
(X; t1, t2) and Iw

(X||Y ; t1, t2) are defined in the next section.

The paper is arranged as follows. First, in Section 2, we recall some prelim-

inary definitions. Few characterization results are proved in Section 3. Further,

various lifetime distributions are characterized from the relationships among reli-

ability measures. In Section 4, we analysis the effect of the affine transformations

on the doubly truncated weighted KLD. Then, few inequalities and bounds are

obtained in Section 5. Section 6 contains few examples in support of the results

obtained in Section 5. Finally, some concluding remarks have been added in

Section 7.

Throughout the paper, the random variables are taken to be nonnegative

and absolutely continuous. The terms increasing and decreasing are used in non-

strict sense. The differentiation, integration and expectation wherever used are

assumed to exist.

2. PRELIMINARY RESULTS

In this section, we present some preliminary definitions and results which

are useful for the rest of the paper. Let X and Y be two nonnegative absolutely

continuous random variables with pdfs f and g, and cdfs F and G, respectively.
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Then the generalized failure rate (GFR) functions of (X|t1 < X < t2) and (Y |t1 <

Y < t2) are given by (see Navarro and Ruiz, 1996)

hX
1 (t1, t2) =

f(t1)

∆F
, hX

2 (t1, t2) =
f(t2)

∆F
(2.1)

and

hY
1 (t1, t2) =

g(t1)

∆G
, hY

2 (t1, t2) =
g(t2)

∆G
,(2.2)

respectively for (t1, t2) ∈ D. Note that when t2 tends to +∞, hX
1 (t1, t2) reduces

to the failure rate of X, and when t1 tends to zero, hX
2 (t1, t2) reduces to re-

versed failure rate of X. Similarly for the random variable Y . Navarro and Ruiz

(1996) showed that the distribution function can be uniquely determined by GFR

functions.

Definition 2.1. Let X be a nonnegative random variable with pdf f and

cdf F . Then the generalized conditional mean (GCM) of a doubly truncated

random variable (X|t1 < X < t2) is given by

µX(t1, t2) = E(X|t1 < X < t2) =

∫ t2

t1

xf(x)

∆F
dx.(2.3)

For some characterizations based on (2.3), one may refer to Ruiz and

Navarro (1996).

Definition 2.2. Let X be a nonnegative random variable with pdf f and

cdf F . Then the geometric vitality function for (X|t1 < X < t2) is defined as

GX(t1, t2) = E(lnX|t1 < X < t2) =

∫ t2

t1

lnxf(x)

∆F
dx.(2.4)

Note that GX(t1, t2) gives the geometric mean life of X truncated at two

points t1 and t2. Nair and Rajesh (2000) gave some applications of geometric

vitality function. Sunoj et al. (2009) discussed few properties of this measure

and showed that it determines the distribution function uniquely. The weighted

version of the measure given by (2.4) is defined as follows.

Definition 2.3. The weighted geometric vitality function of a nonnegative

random variable X with pdf f and cdf F is given by

Gw
X(t1, t2) = E(X lnX|t1 < X < t2) =

∫ t2

t1

x lnxf(x)

∆F
dx.(2.5)
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Definition 2.4. For a nonnegative random variable X with pdf f and

cdf F , the doubly truncated weighted Shannon entropy is given by

Sw
(X; t1, t2) = −

∫ t2

t1

x
f(x)

∆F
ln

(f(x)

∆F

)
dx.(2.6)

In the following we consider the definition of weighted inaccuracy measure

between two doubly truncated random variables.

Definition 2.5. The doubly truncated weighted inaccuracy measure be-

tween two nonnegative random variables X and Y is given by

Iw
(X||Y ; t1, t2) = −

∫ t2

t1

x
f(x)

∆F
ln

(g(x)

∆G

)
dx.(2.7)

Next we recall the following important definition from Shaked and Shan-

thikumar (2007).

Definition 2.6. Let X and Y be two random variables with pdfs f and g,

and cdfs F and G, respectively. We say that X is larger than Y in likelihood

ratio order, denoted by X ≥lr Y if f(x)/g(x) is increasing in x.

Log-sum inequality: Let m be a sigma finite measure. If f and g are

positive and m integrable, then

∫
f log

(f

g

)
dm ≥

[ ∫
fdm

]
log

[∫
fdm∫
gdm

]
.(2.8)

3. CHARACTERIZATIONS

In this section, we obtain some characterization results which may be used

to describe probability distributions. The general characterization problem is to

determine when the doubly truncated weighted KLD uniquely determines the dis-

tribution function. Yasaei Sekeh et al. (2013) showed that under some conditions,

the weighted KLD for two residual and past lifetime distributions characterizes

the distribution function uniquely. In the following theorem, we show that using

relationship between doubly truncated weighted KLD and GCM, and under the

condition on GFR functions, one can characterize one of the distributions when

other is known.

Theorem 3.1. Let X and Y be two absolutely continuous nonnegative

random variables with pdfs f and g and cdfs F and G, respectively, such that
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hY
i (t1, t2) ≤ hX

i (t1, t2), i = 1, 2. Then the doubly truncated weighted KLD given

by (1.4) characterizes the distribution function G (or F ), when F (or G) is known,

provided Dw
KL(X||Y ; t1, t2) = µX(t1, t2).

Proof: Differentiating (1.4) partially with respect to t1 (for any fixed t2)

and t2 (for any fixed t1), we get after simplification

∂Dw
KL(X||Y ; t1, t2)

∂t1
= hX

1 (t1, t2)
[
Dw

KL(X||Y ; t1, t2) + µX(t1, t2)

(3.1)

+t1 ln

(hY
1 (t1, t2)

hX
1 (t1, t2)

)]
− hY

1 (t1, t2)µX(t1, t2)

and

∂Dw
KL(X||Y ; t1, t2)

∂t2
= −hX

2 (t1, t2)
[
Dw

KL(X||Y ; t1, t2) + µX(t1, t2)

(3.2)

+t2 ln

(hY
2 (t1, t2)

hX
2 (t1, t2)

)]
+ hY

2 (t1, t2)µX(t1, t2).

Moreover, differentiating (2.3) with respect to t1 and t2, we obtain

∂µX(t1, t2)

∂t1
= hX

1 (t1, t2)
[
µX(t1, t2) − t1

]
(3.3)

and

∂µX(t1, t2)

∂t2
= −hX

2 (t1, t2)
[
µX(t1, t2) − t2

]
,(3.4)

respectively. Again, differentiating Dw
KL(X||Y ; t1, t2) = µX(t1, t2) with respect to

ti (for fixed tj , j 6= i), i, j = 1, 2 and using (3.1), (3.2), (3.3) and (3.4) we get

tih
X
i (t1, t2)

[
1 + ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]
+ [hX

i (t1, t2) − hY
i (t1, t2)]µX(t1, t2) = 0.(3.5)

The above equation given by (3.5) can be further written as

gi(x) = ti[1 + lnx] + (1 − x)µX(t1, t2) = 0, i = 1, 2,(3.6)

where x = hY
i (t1, t2)/hX

i (t1, t2) and 0 < x < 1. Thus, for any fixed t2 and ar-

bitrary t1, hY
1 (t1, t2)/hX

1 (t1, t2) is a positive solution of the equation g1(x) = 0.

Also, for any fixed t1 and arbitrary t2, hY
2 (t1, t2)/hX

2 (t1, t2) is a positive solution

of the equation g2(x) = 0. After some simple calculations, it is easy to show that

both the solutions of g1(x) = 0 and g2(x) = 0 are unique. Hence, using the result

that GFR functions uniquely determine the distribution function (see Navarro

and Ruiz, 1996), the proof follows. This completes the proof of the theorem.
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Theorem 3.2. Let X and Y be two absolutely continuous nonnegative

random variables with pdfs f and g and cdfs F and G, respectively. Assume

hY
1 (t1, t2) = θhX

1 (t1, t2) and Dw
KL(X||Y ; t1, t2) > (<) (θ − 1)µX(t1, t2) − t1 log θ,

where θ > 0. If Dw
KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t1 for

fixed t2, then Dw
KL(X||Y ; t1, t2) characterizes the distribution function uniquely.

Proof: Under the given hypothesis, (3.1) is reduced to

∂Dw
KL(X||Y ; t1, t2)

∂t1
= hX

1 (t1, t2)
[
Dw

KL(X||Y ; t1, t2)

+(1 − θ)µX(t1, t2) + t1 ln θ
]
.(3.7)

The expression in (3.7) can be written further as

u(x) =
∂Dw

KL(X||Y ; t1, t2)

∂t1
− x

[
Dw

KL(X||Y ; t1, t2) + (1 − θ)µX(t1, t2) + t1 ln θ
]

(3.8)
= 0,

where x = hX
1 (t1, t2) is a positive solution of u(x) = 0. Since Dw

KL(X||Y ; t1, t2) >

(<)(θ − 1)µX(t1, t2) − t1 log θ, therefore from (3.8) it is easy to show that

lim
x→+∞

u(x) = −∞ (+∞).(3.9)

Again, Dw
KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t1 for fixed t2.

Therefore,

lim
x→0

u(x) =
∂Dw

KL(X||Y ; t1, t2)

∂t1
> (<)0.(3.10)

Differentiating (3.8) with respect to x we have u′
(x) = −[Dw

KL(X||Y ; t1, t2) +

(1 − θ)µX(t1, t2) + t1 ln θ] < (>) 0 implies u(x) is a decreasing (increasing) func-

tion in x > 0. Hence, x = hX
1 (t1, t2) is the only solution of u(x) = 0. This com-

pletes the proof of the theorem.

Theorem 3.3. Let X and Y be two absolutely continuous nonnegative

random variables with pdfs f and g and cdfs F and G, respectively. Assume that

for θ > 0, hY
2 (t1, t2) = θhX

2 (t1, t2) and Dw
KL(X||Y ; t1, t2) < (>)(θ− 1)µX(t1, t2)−

t2 ln θ. If Dw
KL(X||Y ; t1, t2) is strictly increasing (decreasing) in t2 for fixed t1,

then Dw
KL(X||Y ; t1, t2) characterizes the distribution function uniquely.

Proof: Proof follows along the similar arguments of that of the Theorem

3.2. Hence it is omitted.
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It is noted that the conditions used in the above theorems are sufficient.

Henceforth, we present characterization theorems for some useful continuous dis-

tributions. Let X and Y be two nonnegative absolutely continuous random vari-

ables with cdfs F and G, pdfs f and g, hazard rate functions λF and λG and

reversed hazard rate functions rF and rG, respectively. Then X and Y are said

to satisfy the proportional hazard rate model (PHRM) and proportional reversed

hazard rate model (PRHRM) if for some θ > 0,

Ḡ(x) = [F̄ (x)]
θ

and G(x) = [F (x)]
θ,(3.11)

respectively, where F̄ = 1 − F and Ḡ = 1 − G. The constant θ is known as pro-

portionality constant. Several researchers used PHRM for survival data analysis.

See, for instant, Cox (1972), Ebrahimi and Kirmani (1996) and Nair and Gupta

(2007). On the other hand, for various results on PRHRM, we refer to Gupta

and Gupta (2007) and Sankaran and Gleeja (2008). In the following consecu-

tive theorems, we present characterizations of the first and second kind Pareto

distributions.

Theorem 3.4. Let X and Y be two absolutely continuous nonnegative

random variables with pdfs f and g and cdfs F and G, respectively. Assume that

F and G satisfies PHRM with proportionality constant θ > 0. Then for i = 1, 2,

the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1 + αθ) ln ti + ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]

(3.12)
= (1 + αθ)Gw

X(t1, t2) + E(X ln f(X)|t1 < X < t2),

holds if and only if X follows Pareto-I distribution with cdf F (x) = 1 − (β/x)
α,

x > β > 0, α > 0.

Proof: The “if part” can be proved easily. To prove the “only if part”, we

assume that (3.12) holds. Using (1.4) and after simplification, we get from (3.12)

∫ t2

t1

xf(x) ln

(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1+αθ) ln ti + ln

(g(ti)

∆G

)
− ln

(f(ti)

∆F

)]

(3.13) ×
∫ t2

t1

xf(x)dx = (1 + αθ)

∫ t2

t1

xf(x) lnxdx +

∫ t2

t1

xf(x) ln f(x)dx.

Differentiating (3.13) with respect to ti and then further calculations lead to

g(ti) = kt
−(αθ+1)
i , i = 1, 2 and k > 0.

Hence the required result follows. This completes the proof.
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Theorem 3.5. Let X and Y be two absolutely continuous random vari-

ables as described in Theorem 3.4 and satisfying PHRM with proportionality

constant θ > 0. Then for i = 1, 2, the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1,t2)

[
ln f(ti)+(1+αθ) ln(ti−γ +β)+ ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]

(3.14)
= (1 + αθ)Gw

Z(t1, t2) + E(X ln f(X)|t1 < X < t2),

where Gw
Z(t1, t2) = E(X ln(X − γ + β)|t1 < X < t2) holds if and only if X follows

Pareto-II distribution with cdf F (x) = 1 − [1 + (
x−γ

β )]
−α, x > γ > 0, α, β > 0.

Proof: The “if part” is straightforward and hence omitted. To prove the

“only if part”, let us assume that (3.14) holds. Then from (3.14) and (1.4) we

obtain

∫ t2

t1

xf(x) ln

(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1 + αθ) ln(ti − γ + β) + ln

(g(ti)

∆G

)

− ln

(f(ti)

∆F

)] ∫ t2

t1

xf(x)dx = (1 + αθ)

∫ t2

t1

xf(x) ln(x − γ + β)dx(3.15)

+

∫ t2

t1

xf(x) ln f(x)dx.

Differentiating (3.15) with respect to ti, i = 1, 2 and after some algebraic calcula-

tions, we get

g(ti) = k(ti − γ + β)
−(1+αθ), i = 1, 2 and k > 0.

Hence the result follows. This completes the proof of the theorem.

Here, below we present a characterization theorem for Weibull distribution.

Theorem 3.6. Let X and Y be two absolutely continuous nonnegative

random variables as mentioned in Theorem 3.4. Also, assume that they satisfy

PHRM with proportionality constant θ > 0. Then the following relationship of

the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
λθtpi + ln f(ti) + (1 − p) ln ti + ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]

(3.16)

+λθµXp+1(t1, t2) = (1 − p)Gw
Z∗(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,

where µXp+1(t1, t2) = E(Xp+1|t1 < X < t2) and Gw
Z∗(t1, t2) = E(X ln(X−α)|t1 <

X < t2) holds if and only if X follows Weibull distribution with cdf F (x) =

1 − exp(−λxp
), x > 0, p > 0, λ > 0.
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Proof: The “if part” is straightforward. To prove the “only if part”, we

first assume that (3.16) holds. Then using (1.4) in (3.16), we get

∫ t2

t1

xf(x) ln

(f(x)/∆F

g(x)/∆G

)
dx +

[
λθtpi + ln f(ti) + (1 − p) ln ti + ln

(g(ti)

∆G

)

− ln

(f(ti)

∆F

)] ∫ t2

t1

xf(x)dx = (1 − p)

∫ t2

t1

xf(x) ln(x − α)dx

(3.17)
+

∫ t2

t1

xf(x) ln f(x)dx − λθ

∫ t2

t1

xp+1f(x)dx.

Differentiating (3.17) with respect to ti, i = 1, 2, and after some algebraic calcu-

lations, we obtain

g(ti) = ct
(p−1)
i e−λθtpi , i = 1, 2 and c > 0.

Hence the required result follows. This completes the proof.

Remark 3.1. In particular, for p = 1, 2, the Theorem 3.6 provides char-

acterization results of exponential distribution with cdf F (x) = 1 − e−λx
, x > 0,

λ > 0 and Rayleigh distribution with cdf F (x) = 1− e−λx2

, x > 0, λ > 0, respec-

tively.

Hereafter, we present results which characterize uniform and power distri-

butions.

Theorem 3.7. Let X and Y be two absolutely continuous nonnegative

random variables as described in Theorem 3.4 and satisfying PRHRM with pro-

portionality constant θ > 0. Then the following relationship of the form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1 − θ) ln(ti − α) + ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]

(3.18)
= (1 − θ)Gw

Z∗(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,

where Gw
Z∗(t1, t2) = E(X ln(X −α)|t1 < X < t2) and α < t1 < t2 < β holds if and

only if X follows uniform distribution in the interval (α, β).

Proof: The“if part” is straightforward. To prove the“only if part”, assume

that (3.18) holds for i = 1 and 2. Using (1.4), the above relation (3.18) further

reduces to

∫ t2

t1

xf(x) ln

(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1 − θ) ln(ti − α) + ln

(g(ti)

∆G

)

− ln

(f(ti)

∆F

)] ∫ t2

t1

xf(x)dx = (1 − θ)

∫ t2

t1

xf(x) ln(x − α)dx(3.19)

+

∫ t2

t1

xf(x) ln f(x)dx,
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for i = 1, 2. Differentiating (3.19) with respect to ti, i = 1, 2 and then simplifying

further, we obtain

g(ti) = c(ti − α)
(θ−1), i = 1, 2 and c > 0,

which gives the required result. This completes the proof.

Theorem 3.8. Let X and Y be two absolutely continuous nonnegative

random variables as mentioned in Theorem 3.4 and satisfying PRHRM with pro-

portionality constant θ > 0. Then for c > 0, the following relationship of the

form

Dw
KL(X||Y ; t1, t2) + µX(t1, t2)

[
ln f(ti) + (1 − cθ) ln ti + ln

(hY
i (t1, t2)

hX
i (t1, t2)

)]

(3.20)
= (1 − cθ)Gw

X(t1, t2) + E(X ln f(X)|t1 < X < t2), i = 1, 2,

where Gw
X(t1, t2) is given by (2.5) holds if and only if X follows power distribution

with cdf F (x) = (
x
b )

c, 0 < x < b, c > 0.

Proof: The “if part” is straightforward. To prove the “only if part”, let us

assume that (3.20) holds. Using (1.4), (3.20) further reduces to

∫ t2

t1

xf(x) ln

(f(x)/∆F

g(x)/∆G

)
dx +

[
ln f(ti) + (1− cθ) ln ti + ln

(g(ti)

∆G

)
− ln

(f(ti)

∆F

)]

(3.21)
×

∫ t2

t1

xf(x)dx = (1 − cθ)

∫ t2

t1

xf(x) lnxdx +

∫ t2

t1

xf(x) ln f(x)dx.

Differentiating (3.21) with respect to ti, i = 1, 2, we get

g(ti) = kt
(cθ−1)
i , i = 1, 2 and k > 0,

which follows the required result. This completes the proof.

4. MONOTONE TRANSFORMATIONS

In this section, we analysis the effect of the doubly truncated weighted KLD

given by (1.4) under strictly monotone transformations. The following theorem

is a generalization of the Theorem 4.13 of Yasaei Sekeh et al. (2013).

Theorem 4.1. Let X and Y be two absolutely continuous nonnegative

random variables with pdfs f and g, and cdfs F and G, respectively. Consider
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two bijective functions φ1 and φ2, which are strictly monotone and differentiable.

Then for all 0 ≤ t1 < t2 < +∞, we have

Dw
KL(φ1(X)||φ2(Y ); t1, t2) =





Dw,φ1

KL (X||φ−1
1 (φ2(Y ));φ−1

1 (t1), φ
−1
1 (t2)),

if φ1 and φ2 are strictly increasing,

Dw,φ1

KL (X||φ−1
1 (φ2(Y ));φ−1

1 (t2), φ
−1
1 (t1)),

if φ1 and φ2 are strictly decreasing,

where

Dw,φ
KL(X||Y ; t1, t2) =

∫ t2

t1

φ(x)
f(x)

∆F
ln

(f(x)/∆F

g(x)/∆G

)
dx.(4.1)

Proof: Assume that φ1(x) and φ2(x) are strictly increasing functions. Un-

der this condition, the pdfs and cdfs of φ1(X) and φ2(Y ) can be obtained as

fφ1
(x) =

f(φ−1
1 (x))

φ′
1(φ

−1
1 (x))

and Fφ1
(x) = F (φ−1

1 (x))(4.2)

and

gφ2
(x) =

f(φ−1
2 (x))

φ′
2(φ

−1
2 (x))

and Gφ2
(x) = G(φ−1

2 (x)),(4.3)

respectively. Moreover, the pdf and the cdf of φ−1
1 (φ2(X)) are respectively given

by

gφ−1

1
(φ2)(x) =

g(φ−1
2 (φ1(x)))φ′

1(x)

φ′
2(φ

−1
2 (φ1(x)))

and Gφ−1

1
(φ2)(x) = G(φ−1

2 (φ1(x))).(4.4)

Applying (4.2) and (4.3) in (1.4), we obtain

Dw
KL(φ1(X)||φ2(Y ); t1, t2) =

∫ t2

t1

x
f(φ−1

1 (x))/φ′
1(φ

−1
1 (x))

∆Fφ1

(4.5)

× ln

(
f(φ−1

1 (x))/(φ′
1(φ

−1
1 (x))∆Fφ1)

g(φ−1
2 (x))/(φ′

2(φ
−1
2 (x))∆Gφ2)

)
dx,

where ∆Fφ1 = F (φ−1
1 (t2)) − F (φ−1

1 (t1)) and ∆Gφ2 = G(φ−1
2 (t2)) − G(φ−1

2 (t1)).

Further, using the transformation u = φ−1
1 (x) in (4.5), we get

Dw
KL(φ1(X)||φ2(Y ); t1, t2) =

∫ φ−1

1
(t2)

φ−1

1
(t1)

φ1(u)
f(u)

∆Fφ1

(4.6)

× ln

(
f(u)/(φ′

1(u)∆Fφ1)

g(φ−1
2 (φ1(u)))/(φ′

2(φ
−1
2 (φ1(u)))∆Gφ2)

)
du.

Hence from (4.6), the first part of the theorem follows. The second part can be

proved similarly and hence omitted. This completes the proof of the theorem.
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Remark 4.1. Note that when t1 → 0 (for fixed t2) and t2 →∞ (for fixed t1),

Theorem 4.1 reduces to Theorem 4.13 of Yasaei Sekeh et al. (2013).

Remark 4.2. Consider φ1(x) = F (x) and φ2(x) = G(x). Here, both F (x)

and G(x) are strictly increasing in their supports. Also, consider φ1(x) = F (x)

and φ2(x) = G(x), which are strictly decreasing in supports. Clearly, φ1(x) and

φ2(x) satisfy the assumptions of Theorem 4.1. Thus as an application of the

Theorem 4.1, we get

Dw
KL(F (X)||G(Y ); t1, t2) = Dw,F

KL (X||F−1
(G(Y ));F−1

(t1), F
−1

(t2))(4.7)

and

Dw
KL(F̄ (X)||Ḡ(Y ); t1, t2) = Dw,F̄

KL (X||F̄−1
(Ḡ(Y )); F̄−1

(t2), F̄
−1

(t1)).(4.8)

The following proposition is due to Theorem 4.1. It provides the effects of

the doubly truncated weighted KLD under affine transformations.

Proposition 4.1. Let X and Y be two nonnegative absolutely continu-

ous random variables with pdfs f and g, and cdfs F and G, respectively. Define

φ1(X) = a1X + b1 and φ2(Y ) = a2Y + b2, where a1, a2 > 0 and b1, b2 ≥ 0 are con-

stants. Then for t1 > b2 and b2 ≥ b1,

Dw
KL(φ1(X)||φ2(Y ); t1, t2) = Dw,φ1

KL

(
X||a2

a1
Y +

b2 − b1

a1
;
t1 − b1

a1
,
t2 − b1

a1

)
.(4.9)

Remark 4.3. Under the assumptions as described in Proposition 4.1, the

right hand side expression given by (4.9) can be written further as

Dw
KL(φ1(X)||φ2(Y ); t1, t2) = a1D

w
KL

(
X||a2

a1
Y +

b2 − b1

a1
;
t1 − b1

a1
,
t2 − b1

a1

)

(4.10)

+ b1DKL

(
X||a2

a1
Y +

b2 − b1

a1
;
t1 − b1

a1
,
t2 − b1

a1

)
.

In particular, if we consider φ1(x) = φ2(x) = φ(x), then Theorem 4.1 re-

duces to the following result. We omit the proof as it follows from that of the

Theorem 4.1.

Theorem 4.2. Let X and Y be two absolutely continuous nonnegative

random variables as described in Theorem 4.1. Assume that φ(x) is strictly

monotone and differentiable function. Then for all 0 ≤ t1 < t2 < +∞, we have

Dw
KL(φ(X)||φ(Y ); t1, t2) =





Dw,φ
KL(X||Y ; φ−1

(t1), φ
−1

(t2)),
if φ(x) is strictly increasing,

Dw,φ
KL(X||Y ; φ−1

(t2), φ
−1

(t1)),
if φ(x) is strictly decreasing,

where Dw,φ
KL(X||Y ; t1, t2) is given by (4.1).



312 Rajesh Moharana and Suchandan Kayal

Proposition 4.2. Let X and Y be two nonnegative absolutely continuous

random variables with pdfs f and g, and cdfs F and G, respectively. Define

φ1(x) = φ2(x) = φ(x) = ax + b, where a > 0 and b ≥ 0 are constants. Then for

t1 > b

Dw
KL(φ(X)||φ(Y ); t1, t2) = Dw,φ

KL

(
X||Y ;

t1 − b

a
,
t2 − b

a

)
.(4.11)

5. INEQUALITIES AND BOUNDS

In this section, we obtain various inequalities and bounds for doubly trun-

cated weighted KLD given by (1.4) in terms of other measures, which may be

useful in mathematical statistics, ergodic theory and other scientific fields. Most

of these depend on the measures (2.1)–(2.3) and (2.5)–(2.7). Several authors

studied these measures and obtained various results. For some results on these

measures, we refer to Navarro and Ruiz (1996), Misagh and Yari (2011), Sankaran

and Sunoj (2004) and Kundu (2017).

Proposition 5.1. Let X and Y be two nonnegative absolutely continuous

random variables with pdfs f and g, and cdfs F and G, respectively. Suppose

that Dw
KL(X||Y ; t1, t2) is increasing (decreasing) in t1 (for fixed t2) and t2 (for

fixed t1). Then

Dw
KL(X||Y ; t1, t2) ≥ (≤)

(hY
1 (t1, t2)

hX
1 (t1, t2)

− 1

)
µX(t1, t2) − t1 ln

(hY
1 (t1, t2)

hX
1 (t1, t2)

)

and

Dw
KL(X||Y ; t1, t2) ≤ (≥)

(hY
2 (t1, t2)

hX
2 (t1, t2)

− 1

)
µX(t1, t2) − t2 ln

(hY
2 (t1, t2)

hX
2 (t1, t2)

)
.

Proof: Under the given condition, the required inequalities follow from

(3.1) and (3.2), and hence, omitted.

The following proposition provides bounds of (1.4) in terms of GCM, GFR

functions and doubly truncated weighted inaccuracy measure.

Proposition 5.2. Let X and Y be two random variables as described in

Proposition 5.1. If f(x) is increasing (decreasing) in x > 0, then

Dw
KL(X||Y ; t1, t2) ≥ (≤) µX(t1, t2) lnhX

1 (t1, t2) + Iw
(X||Y ; t1, t2)

and
Dw

KL(X||Y ; t1, t2) ≤ (≥) µX(t1, t2) lnhX
2 (t1, t2) + Iw

(X||Y ; t1, t2).
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Proof: Let f(x) be increasing (decreasing) in x > 0. Then for t1 < x < t2,

we have

f(t1)

∆F
≤ (≥)

f(x)

∆F
≤ (≥)

f(t2)

∆F
.(5.1)

Moreover, g(x)/∆G is positive. Thus from (5.1) we get

ln

(f(t1)

∆F

/g(x)

∆G

)
≤ (≥) ln

(f(x)

∆F

/g(x)

∆G

)
≤ (≥) ln

(f(t2)

∆F

/g(x)

∆G

)
.(5.2)

Multiplying (5.2) by xf(x)
∆F and then integrating from t1 to t2 with respect to x,

the required inequalities follow.

Proposition 5.3. Let X and Y be two random variables as described in

Proposition 5.1. If g(x) is increasing (decreasing) in x > 0, then

Dw
KL(X||Y ; t1, t2) ≥ (≤) −µX(t1, t2) lnhY

2 (t1, t2) − Sw
X(t1, t2)

and
Dw

KL(X||Y ; t1, t2) ≤ (≥) −µX(t1, t2) lnhY
1 (t1, t2) − Sw

X(t1, t2).

Proof: Proof follows analogous to that of the Proposition 5.2. Hence

omitted.

Below, in Proposition 5.4, we give new inequalities for Dw
KL(X||Y ; t1, t2)

involving a pair of likelihood ratio ordered random variables.

Proposition 5.4. Let X and Y be two random variables as described in

Proposition 5.1. If X ≥lr Y , then

µX(t1, t2) ln

(hX
1 (t1, t2)

hY
1 (t1, t2)

)
≤ Dw

KL(X||Y ; t1, t2) ≤ µX(t1, t2) ln

(hX
2 (t1, t2)

hY
2 (t1, t2)

)
.

Proof: Under the given condition, f(x)/g(x) is increasing in x > 0. Then

for t1 < x < t2, we have
f(t1)
g(t1)

≤ f(x)
g(x) ≤ f(t2)

g(t2) . Thus from (1.4) we obtain

Dw
KL(X||Y ; t1, t2) ≤

∫ t2

t1

x
f(x)

∆F
ln

(f(t2)/∆F

g(t2)/∆G

)
dx

(5.3)

= µX(t1, t2) ln

(hX
2 (t1, t2)

hY
2 (t1, t2)

)

and

Dw
KL(X||Y ; t1, t2) ≥

∫ t2

t1

x
f(x)

∆F
ln

(f(t1)/∆F

g(t1)/∆G

)
dx

(5.4)

= µX(t1, t2) ln

(hX
1 (t1, t2)

hY
1 (t1, t2)

)
.

Combining (5.3) and (5.4), we obtain the required inequalities.
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Proposition 5.5. Let X and Y be two random variables as described in

Proposition 5.1. Then

Dw
KL(X||Y ; t1, t2) ≥ µX(t1, t2) ln

(µX(t1, t2)

µY (t1, t2)

)
.

Proof: The result follows from the log-sum inequality and hence omitted.

Proposition 5.6. Let X and Y be two random variables as described in

Proposition 5.1. Then

Dw
KL(X||Y ; t1, t2) ≤ E

(
X

f(X)/∆F

g(X)/∆G

∣∣∣t1 < X < t2

)
− µX(t1, t2).(5.5)

Proof: The proof follows from the inequality lnx ≤ x − 1, for all x > 0.

Hence it is omitted.

Hereafter, we consider three nonnegative random variables X1, X2 and

X3 and obtain bounds of Dw
KL(X1||X3; t1, t2), Dw

KL(X1||X2; t1, t2) and

Dw
KL(X2||X3; t1, t2).

Proposition 5.7. Let X1, X2 and X3 be three nonnegative absolutely

continuous random variables with pdf’s f1(x), f2(x) and f3(x), respectively. The

corresponding cdf’s are F1(x), F2(x) and F3(x). If X1 ≥lr X2, then

Dw
KL(X1||X3; t1, t2) ≥ µX1

(t1, t2) ln

(hX1

1 (t1, t2)

hX2

1 (t1, t2)

)
+ IDw

(t1, t2)

and

Dw
KL(X1||X3; t1, t2) ≤ µX1

(t1, t2) ln

(hX1

2 (t1, t2)

hX2

2 (t1, t2)

)
+ IDw

(t1, t2),

where IDw
(t1, t2) = Iw

(X1||X3; t1, t2) − Iw
(X1||X2; t1, t2).

Proof: Using X1 ≥lr X2 and t1 < x, we obtain f1(x) ≥ f2(x)f1(t1)/f2(t1).

Thus, from (1.4)

Dw
KL(X1||X3; t1, t2) =

∫ t2

t1

x
f1(x)

∆F1
ln

(f1(x)/∆F1

f3(x)/∆F3

)
dx

≥
∫ t2

t1

x
f1(x)

∆F1
ln

(
(f2(x)f1(t1))/(∆F2∆F1)

(f3(x)f2(t1))/(∆F3∆F2)

)
dx(5.6)

= µX1
(t1, t2) ln

(hX1

1 (t1, t2)

hX2

1 (t1, t2)

)
+ IDw

(t1, t2).

The upper bound can be obtained similarly. This completes the proof.
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Proposition 5.8. Let X1, X2 and X3 be three random variables as de-

scribed in Proposition 5.7. If X2 ≥lr X3, then

Dw
KL(X1||X2; t1, t2) ≥ µX1

(t1, t2) ln

(hX3

2 (t1, t2)

hX2

2 (t1, t2)

)
+ ISw

1 (t1, t2)

and

Dw
KL(X1||X2; t1, t2) ≤ µX1

(t1, t2) ln

(hX3

1 (t1, t2)

hX2

1 (t1, t2)

)
+ ISw

1 (t1, t2),

where ISw
1 (t1, t2) = Iw

(X1||X3; t1, t2) − Sw
(X1; t1, t2).

Proof: Under X2 ≥lr X3, for x < t2, we have f2(x) ≤ f3(x)f2(t2)/f3(t2).

Thus applying this inequality in (1.4) and after some simplifications, lower bound

can be obtained. The upper bound can be obtained similarly. This completes

the proof.

Proposition 5.9. Let X1, X2 and X3 be three random variables as de-

scribed in Proposition 5.7. If X1 ≥lr X3, then

Dw
KL(X2||X3; t1, t2) ≥ µX2

(t1, t2) ln

(hX1

1 (t1, t2)

hX3

1 (t1, t2)

)
+ ISw

2 (t1, t2)

and

Dw
KL(X2||X3; t1, t2) ≤ µX2

(t1, t2) ln

(hX1

2 (t1, t2)

hX3

2 (t1, t2)

)
+ ISw

2 (t1, t2),

where ISw
2 (t1, t2) = Iw

(X2||X1; t1, t2) − Sw
(X2; t1, t2).

Proof: It is given that X1 ≥lr X3. Therefore, for x > t1, we have

f3(x) ≤ f1(x)f3(t1)/f1(t1). Applying this in (1.4), we get the lower bound of

Dw
KL(X2||X3; t1, t2). The upper bound can be obtained similarly. This completes

the proof.

6. NUMERICAL EXAMPLES

In this section, we consider examples for the verification of few of the results

obtained in Section 5. To verify the Proposition 5.2, we consider the following

example and present numerical values of the lower and upper bounds of the doubly

truncated weighted KLD.

Example 6.1. Suppose that X follows power distribution and Y follows

U-quadratic distribution in the interval (0, 1) with pdfs f(x) = cxc−1
, c > 0,

0 < x < 1 and g(x) = 12(x − 1
2)

2, 0 < x < 1, respectively. Here, f(x) is decreas-

ing in x for c < 1 and increasing in x for c > 1. In Table 1 and Table 2, we present

numerical values of the lower bounds (LB) and upper bounds (UB) of the dou-

bly truncated weighted KLD for different values of t1 and t2 for c = 0.5 and 1.5,

respectively.
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Table 1: Bounds of Dw
KL(X||Y ; t1, t2) for c = 0.5.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) 0.022421 0.077094 0.184155 (0.4,0.5) 0.405266 0.428923 0.455370
(0.1,0.5) 0.252138 0.321949 0.473062 (0.4,0.7) 0.467240 0.532709 0.619190
(0.1,0.9) 0.233992 0.360127 0.710058 (0.4,0.9) 0.546199 0.649186 0.802994
(0.2,0.5) 0.309069 0.369426 0.464263 (0.5,0.6) 0.445497 0.469392 0.495566
(0.2,0.7) 0.356237 0.449858 0.622275 (0.5,0.7) 0.439779 0.485807 0.540251
(0.2,0.8) 0.296777 0.406123 0.620246 (0.5,0.9) 0.426941 0.513659 0.629808

Table 2: Bounds of Dw
KL(X||Y ; t1, t2) for c = 1.5.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) 0.048524 0.185502 0.232704 (0.4,0.5) 0.455614 0.483096 0.505924
(0.1,0.5) 0.434464 0.634879 0.694851 (0.4,0.7) 0.362879 0.458389 0.518698
(0.1,0.9) 0.014652 0.519028 0.628185 (0.4,0.9) 0.280465 0.458343 0.550633
(0.2,0.5) 0.458314 0.570112 0.623685 (0.5,0.6) 0.395761 0.422765 0.445968
(0.2,0.7) 0.404517 0.620202 0.701468 (0.5,0.7) 0.340430 0.398162 0.441841
(0.2,0.8) 0.213175 0.487130 0.581533 (0.5,0.9) 0.227166 0.356106 0.435718

To illustrate Proposition 5.3, we consider the following example.

Example 6.2. Let X and Y be two random variables with pdfs f(x) =

1, 0 < x < 1 and g(x) = b(1 − x)
b−1, 0 < x < 1, b > 0, respectively. Note that

g(x) is increasing in x for b < 1 and decreasing in x for b > 1. In Table 3 and 4,

we present the numerical values of the bounds of the doubly truncated weighted

KLD for b = 0.2 and b = 1.2, respectively.

Table 3: Bounds of Dw
KL(X||Y ; t1, t2) for b = 0.2.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) −0.042188 −0.006974 0.038905 (0.4,0.5) −0.033416 −0.000816 0.032219
(0.1,0.5) −0.074668 −0.012759 0.066401 (0.4,0.7) −0.163019 −0.006694 0.141966
(0.1,0.9) −0.532245 −0.044619 0.346645 (0.4,0.9) −0.547117 −0.003054 0.384598
(0.2,0.5) −0.068887 −0.007283 0.062713 (0.5,0.6) −0.050187 −0.000755 0.047997
(0.2,0.7) −0.193724 −0.020447 0.159375 (0.5,0.7) −0.128847 −0.002608 0.116350
(0.2,0.8) −0.315074 −0.027845 0.239444 (0.5,0.9) −0.521607 0.005471 0.379679

Table 4: Bounds of Dw
KL(X||Y ; t1, t2) for b = 1.2.

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.4) −0.009386 0.002084 0.010888 (0.4,0.5) −0.007930 0.000329 0.008478
(0.1,0.5) −0.015747 0.004043 0.019521 (0.4,0.7) −0.033325 0.003839 0.042921
(0.1,0.9) −0.069415 0.028401 0.150307 (0.4,0.9) −0.080490 0.016423 0.152438
(0.2,0.5) −0.015039 0.002460 0.017861 (0.5,0.6) −0.011771 0.000417 0.012774
(0.2,0.7) −0.036351 0.008604 0.051923 (0.5,0.7) −0.027794 0.001945 0.033504
(0.2,0.8) −0.052349 0.014472 0.086279 (0.5,0.9) −0.081046 0.012505 0.144275
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The following example shows a case in which Proposition 5.4 is fulfilled.

Example 6.3. Consider two nonnegative random variables X and Y with

pdfs f(x) =
2
3(1+x), 0 < x < 1 and g(x) =

2
3(2−x), 0 < x < 1, respectively. By

straightforward calculations, it is not hard to verify that X ≥lr Y . In Table 5,

we present the numerical values of the lower and upper bounds of the doubly

truncated weighted KLD between X and Y .

Table 5: Bounds of Dw
KL(X||Y ; t1, t2).

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.3) −0.028607 0.005274 0.278213 (0.5,0.7) −0.080397 0.006264 0.081120
(0.1,0.6) −0.126393 0.034815 0.122128 (0.5,0.8) −0.131348 0.014560 0.134047
(0.1,0.8) −0.229447 0.071593 0.225767 (0.5,0.9) −0.189889 0.026835 0.196978
(0.3,0.4) −0.023699 0.001387 0.023540 (0.6,0.7) −0.043674 0.001614 0.043969
(0.3,0.7) −0.136517 0.023788 0.136517 (0.6,0.8) −0.094577 0.006683 0.096309
(0.3,0.9) −0.248611 0.056871 0.255551 (0.6,0.9) −0.153075 0.015624 0.158454

In this part of the paper, we provide an example in support of the Propo-

sition 5.7.

Example 6.4. Let X and Y be two nonnegative random variables as

described in Example 6.3. Consider another random variable Z with pdf

f3(x) =
1

2
√

1−x
, 0 < x < 1. Here, X ≥lr Y . The lower and upper bounds of

Dw
KL(X||Y ; t1, t2) obtained in the Proposition 5.7 are presented in Table 6.

Table 6: Bounds of Dw
KL(X||Y ; t1, t2).

(t1, t2) LB Dw
KL(X||Y ; t1, t2) UB (t1, t2) LB Dw

KL(X||Y ; t1, t2) UB

(0.1,0.2) −0.011780 0.000238 0.009483 (0.4,0.6) −0.074033 −0.001039 0.000091
(0.1,0.5) −0.107631 0.000543 0.061938 (0.4,0.7) −0.127975 −0.003167 0.094956
(0.1,0.7) −0.230205 −0.004876 0.113178 (0.4,0.9) −0.274740 −0.012652 0.175896
(0.2,0.4) −0.046788 0.000172 0.035488 (0.6,0.7) −0.045791 −0.000503 0.041852
(0.2,0.5) −0.085598 −0.000282 0.058566 (0.6,0.8) −0.103484 −0.002223 0.087403
(0.2,0.8) −0.275617 −0.011008 0.146067 (0.6,0.9) −0.172764 −0.004064 0.138765

Real Data: We consider two real data sets, which represent the failure times of

the air conditioning system of two different air planes (see Bain and Engelhardt,

1991, p. 101). The data sets are given below:

Data Set I (Plane 7912 ): 1, 3, 5, 7, 11, 11, 11, 12, 14, 14, 14, 16, 16, 20, 21,

23, 42, 47, 52, 62, 71, 71, 87, 90, 95, 120, 120, 225, 246, 261.

Data Set II (Plane 7911 ): 33, 47, 55, 56, 104, 176, 182, 220, 239, 246, 320.
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The above data sets, Data Set I and Data Set II can be fitted as exponential

distributions with parameters (hazard rates) λ1 and λ2, respectively. We as-

sume that due to some reasons, the data in the interval [50, 200] are observed.

Based on this assumption, the unknown parameters can be estimated. For this

purpose, we use the method of maximum likelihood. Here, the estimated val-

ues of the parameters are λ̂1 = 0.026029 and λ̂2 = 0.005611. From (1.4), we get

D̂w
KL(X||Y ; 50, 200) = 2.5069.

7. CONCLUDING REMARKS

In this paper, we consider a generalized discrimination measure, which is

known as the doubly truncated weighted KLD. We obtain few characterization

results based on the proposed measure. These results may be useful in studying

various characteristics of a system when its lifetimes fall in an interval. Further,

the effect of the affine transformations on the proposed discrimination measure is

studied. Several inequalities and bounds are obtained. Finally, few applications

with bounds in support of the results are presented.
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1. INTRODUCTION

In applications involving lifetime models such as survival analysis, demog-

raphy, reliability, actuarial study and others, the distributions with positive real

supports play a fundamental role. Because of this, in recent years, there is a grow-

ing interest in constructing new distributions to model aging phenomena [15, 14].

The method that has received most attention by researchers to generate new

models is that one by compounding existing distributions, usually referred to

as generalized G families of distributions [28]. The principal reason for this is

the ability of these generalized distributions to be more flexible than the base-

line G distribution to provide better fits to skewed data and good control of the

tails [23]. The second reason is the powerful computational and analytical facili-

ties available in several software packages, which facilitate handling and comput-

ing complex mathematical expressions. Some of the generalized G families best

known are: the Marshall–Olkin extended (MOE) family [18], the exponentiated-

generated (exp-G) family [13, 8], the beta-generated (beta-G) family [9], the

Kumaraswamy-generated (Kw-G) family [7], the gamma-generated (gamma-G)

families [29, 25, 22] and the McDonald-generated (Mc-G) family [2]. A detailed

compilation of these families is given in [28].

In this paper, we adopt the beta Marshall–Olkin generated (BMO-G) fam-

ily proposed by Alizadeh et al. [3] to define the new beta Marshall–Olkin Lomax

(BMOL) distribution obtained by taking the Lomax distribution [17] as the base-

line G model. Given that the proposed distribution has positive real support, our

objective is to define a wide flexible distribution for real lifetime applications.

The paper unfolds as follows. In Section 2, we describe some preliminar-

ies and introduce the BMOL distribution. In Section 3, we plot its density and

hazard rate functions for some parameter values. In Section 4, we obtain an ex-

pansion for the BMOL density function as a linear combination of exp-Lomax and

Lomax densities. In Sections 5–10, we present explicit expressions for the quan-

tile function (qf), moments, generating function, mean deviations, Bonferroni and

Lorenz curves, Shannon entropy and order statistics. Section 11 is devoted to the

maximum likelihood estimates (MLEs) for complete samples and, in Section 12,

we carry out a simulation study to study the performance of these estimates.

In Section 13, we consider an application of the BMOL distribution and compare

it with others related distributions and with the exponentiated Weibull (EW)

distribution [20] based on some goodness-of-fit statistics. Finally, Section 14 con-

cludes the paper.
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2. THE NEW DISTRIBUTION

Marshall & Olkin [18] pioneered a method of introducing an additional

parameter to a distribution. If G(x; ξ) is a baseline distribution with parameter

vector ξ, then the cumulative distribution function (cdf) given by

F (x; c, ξ) =
G(x; ξ)

c+ (1 − c)G(x; ξ)
, c > 0,(2.1)

defines a new distribution with an extra shape parameter c. As commented by

Marshall & Olkin [18], “By various methods, new parameters can be introduced

to expand families of distributions for added flexibility or to construct covariate

models”.

The cdf of the beta-G family (for a, b > 0) is defined by

F (x; a, b, ξ) =
B(G(x; ξ); a, b)

B(a, b)
=

1

B(a, b)

∫ G(x;ξ)

0
wa−1

(1 − w)
b−1 dw,(2.2)

where B(a, b) =
∫ 1
0 w

a−1
(1 − w)

b−1 dw is the beta function and B(z; a, b) =∫ z
0 w

a−1
(1 − w)

b−1 dw is the incomplete beta function. In this case, the gen-

erated distribution F (x; a, b, ξ) has two extra shape parameters a and b. The

beta G family was introduced by Eugene et al. [9], who studied the properties

of the beta-normal distribution. If the baseline G(x; ξ) in (2.2) is the Lomax

distribution, we obtain the beta-Lomax (BL) distribution as defined in [24].

A generalization of these concepts, introduced in [4], follows by considering

the T−X method. Let R(x;γ) be a cdf with support [d, e] and density r(x;γ).

For a given baseline distribution G(x; ξ), let W (·) be a function satisfying the

following properties





W [G(x; ξ)] ∈ [d, e],

W [G(x; ξ)] is differentiable and monotonically non-decreasing,

limx→−∞W [G(x; ξ)] = d, limx→∞W [G(x; ξ)] = e.

Then, the cdf

F (x; δ,γ, ξ) =

∫ W [G(x;ξ)]

d
r(t;γ) dt(2.3)

defines a new distribution, where the link function W (·) = W (·; δ) possibly de-

pends on a parameter vector δ. We say that the distribution R(x;γ) is ‘trans-

formed’ by the ‘transformer’ W [G(x; ξ)].

Following this idea, Alizadeh et al. [3] introduced the BMO-G family by

considering in (2.3) the function W (z) = z/[c+ (1 − c)z], c > 0, and the beta
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distribution as the ‘transformed’ distribution R(x;γ). Notice that, in this case,

the ‘transformer’ W [G(x; ξ)] is given by (2.1).

In this paper, we study the BMOL distribution by considering the base-

line G(x; ξ) in (2.3) as the Lomax distribution [17], which has cdf given by

G(x;α, λ) = 1 −
(
1 +

x

λ

)−α
, x ≥ 0, α > 0, λ > 0(2.4)

and probability density function (pdf)

g(x;α, λ) =
α

λ

(
1 +

x

λ

)−(α+1)
.(2.5)

For the sake of simplicity, we will write sometimes the Lomax distribution with

cdf G(x) and pdf g(x), respectively, without explicit mention to the parameters α

and λ.

It is clear that a generalized G distribution has more parameters than the

baseline G distribution. Generally, the use of four parameters should be sufficient

for most practical purposes. In addition, notice that if X ∼ Lomax(α, λ), then

X/λ ∼ Lomax(α, 1) and, consequently, λ is just a scale parameter. Henceforth,

we consider the BMOL distribution with only four parameters by taking, without

loss of generality, λ = 1 in equations (2.4) and (2.5). Thus, if θ = (a, b, c, α)
⊤

is

the parameter vector, we define the BMOL cdf by

F (x;θ) =
B(W [G(x)]; a, b)

B(a, b)
=

1

B(a, b)

∫ W [G(x)]

0
wa−1

(1 − w)
b−1 dw,(2.6)

where W [G(x)] is given by (2.1). From equations (2.1) and (2.4) (with λ = 1),

we have

W [G(x)] =
(1 + x)α − 1

(1 + x)α + c− 1
.(2.7)

The BMOL pdf follows from (2.6) as

f(x;θ) =
1

B(a, b)
g(x)w[G(x)] {W [G(x)]}a−1 {1 −W [G(x)]}b−1 ,(2.8)

where w(z) = W ′
(z) = c/ [c+ (1 − c)z]2. Thus, we obtain the BMOL pdf

from (2.4), (2.7) and (2.8) as

f(x;θ) =
α cb (1 + x)−bα−1 [

1 − (1 + x)−α]a−1

{
c+ (1 − c)

[
1 − (1 + x)−α]}a+b

B(a, b)
.(2.9)

Hereafter, a random variable X with density function (2.9) will be denoted by

X ∼ BMOL(a, b, c, α).
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In lifetime analysis, a very useful function is the hazard rate function

(hrf) h(x). Therefore, the hrf of X ∼ BMOL(a, b, c, α) is given by

h(x) =
α cb (1 + x)−bα−1 [

1 − (1 + x)−α]a−1

{
c+ (1 − c)

[
1 − (1 + x)−α]}a+b

[B(a, b) −B(W [G(x)], a, b)]
.(2.10)

A random variable X with pdf (2.9) is easily simulated as follows:

if U ∼ Beta(a, b), then

X =

[(
1 − (1 − c)U

1 − U

)1/α

− 1

]
∼ BMOL(a, b, c, α).

For specific values of the parameters a, b and c, some known sub-models of

the BMOL distribution are given in Table 1.

Table 1: Some BMOL sub-models. MOEL: Marshall–Olkin extended Lomax,

Kw-GL: Kumaraswamy-Generalized Lomax, BL: beta Lomax.

a b c Model Reference

1 1 1 Lomax(α, 1) [17]

1 1 — MOEL(c, 1, α) [10]

1 — 1 Kw−GL(1, b, α, 1) [27]

— — 1 BL(a, b, α, 1) (with µ = 0) [24]

3. SHAPES OF THE DENSITY AND HAZARD RATE FUNC-

TIONS

The shapes of the pdf (2.9) can be described analytically by examining

the roots of the equation f ′(x) = 0 and analyzing its limits in (2.9) when x→ 0

or x→ ∞. Clearly, since f(x) ≥ 0 is integrable, then limx→∞ f(x) = 0. The

behavior of f(x) when x→ 0 is governed by the parameter a, which is inherited

from the properties of the beta distribution. For a ≤ 1, we have that f(x) is

convex and strictly decreasing. For a = 1, limx→0 f(x) = b α/c and, for a < 1,

limx→0 f(x) = ∞. For a > 1, f(0) = 0 and it is unimodal with mode at

x0 = − 1 +





Aa,b,c,α +

[
A2

a,b,c,α − 4 (c− 1) (α− 1) (b α+ 1)

]1/2

2 (b α+ 1)





1/α

,
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where Aa,b,c,α = 2− c−α+ b α+ a cα. All parameters allow extensive control on

the right tail, providing, when a > 1, more light or heavy tails, according to the

parameters decrease or increase, respectively, and conversely when a ≤ 1. Some

plots in Figure 1 display possible shapes of the pdf for selected parameter values.

These plots confirm the above analysis.

(a) α = 1.0 (b) b = 2.0, c = 0.8

(c) a = 7.0, b = 0.5 (d) a = 15.0, α = 1.5

Figure 1: Plots of the pdf (2.9) for selected parameters.

The corresponding hrf can have the classical shapes such as decreasing or

unimodal, as shown in Figure 2. Therefore, the new distribution can be appro-

priate for different applications in lifetime analysis.
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(a) b = 2.0, c = 0.8, α = 1.5 (b) a = 2.0

(c) a = 0.5, b = 0.5, c = 1.0 (d) a = 0.8, α = 2.0

Figure 2: Plots of the hrf (2.10) for selected parameters.

4. USEFUL REPRESENTATION

Using the generalized binomial expansion, Alizadeh et al. [3] reveal that

the cdf (2.6) admits the following power series

F (x) =

∞∑

k=0

sk G
k
(x),(4.1)
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where G(x) is the baseline cdf (2.4) (with λ = 1) and, for k ≥ 0,

sk =

∞∑

i,j=0

∞∑

l=k

(−1)
i+l+k

(1 − c)i

(
b− 1

i

)(−a− i

j

)(
a+ i+ j

l

)(
l

k

)

ca+i+j (a+ i)B(a, b)
.(4.2)

We note that (4.2) is valid only for c > 1, it does not converge for c < 1 and it is

not applicable for c = 1. Differentiating (4.1) term by term, we obtain

f(x) =

∞∑

k=0

sk+1 hk+1(x),(4.3)

where hk+1(x) = (k+1) g(x)Gk
(x) denotes the exp-G density function with power

parameter k + 1. Therefore, from (4.3), several properties of the new model can

be derived from those exp-G properties [13].

It is possible to go a step further in (4.1). Using the binomial expansion

in (4.1) gives

F (x) =

∞∑

k=0

k∑

j=0

(−1)
j

(
k

j

)
sk (1 + x)−jα.

By exchanging the indices j and k in the sums, we can write

F (x) =

∞∑

j=0

∞∑

k=j

(−1)
j

(
k

j

)
sk (1 + x)−jα.(4.4)

Finally, differentiating (4.4) term by term, we obtain

f(x) =

∞∑

j=0

pj g(x; (j + 1)α, 1),(4.5)

where g(x; (j + 1)α, 1) is given in (2.5) and, for j = 0, 1, ...,

pj =

∞∑

k=j+1

(−1)
j

(
k

j + 1

)
sk.(4.6)

From equation (4.5), we note that f(x) is given by a linear combination of

Lomax densities. Therefore, several properties of the BMOL distribution can be

obtained from those of the Lomax distribution [17].

5. QUANTILE FUNCTION

Let Qa,b(z) denote the qf of the beta distribution with parameters a and b.

Then, the qf of the BMOL distribution is given by

Q(z) =

[
1 − (1 − c)Qa,b(z)

1 −Qa,b(z)

]1/α

− 1.(5.1)
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An expansion up to third order about z = 0 for the beta qf is given by

Qa,b(z) =

3∑

i=1

qi z
i/a

+ O(z4/a
),

where qi = di [aB(a, b)]i/a
, i = 1, 2, 3, with d1 = 1,

d2 =
b− 1

a+ 1
, d3 =

(b− 1) (a2
+ 3ab− a+ 5b− 4)

2(a+ 1)2(a+ 2)
.

The skewness and kurtosis measures are determined by α3 = µ3/σ
3

and

α4 = µ4/σ
4
, respectively, where µj is the j-th central moment and σ is the stan-

dard deviation. For some generalized distributions obtained by the T−X method

defined by (2.3), as noted by Alzaatreh et al. [4], it could be difficult to determine

the third and fourth moments. Alternative measures for the skewness and kurto-

sis based on the qf are sometimes more appropriate. The measures of skewness

S of Bowley [12] and kurtosis K of Moors [19] are defined by

S =
Q(6/8) +Q(2/8) − 2Q(4/8)

Q(6/8) −Q(2/8)
,(5.2)

K =
Q(7/8) −Q(5/8) +Q(3/8) −Q(1/8)

Q(6/8) −Q(2/8)
.(5.3)

These measures are more robust and they exist even for distributions without

moments.

(a) Skewness (b) Kurtosis

Figure 3: Plots of S of Bowley skewness (5.2) and of K of Moors kurtosis (5.3)

measures for selected parameters (c = 2.0).
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The plots in Figure 3 display the skewness (5.2) and kurtosis (5.3) as func-

tions of the parameter a for some values of the parameters b, c and α. Note that,

as pointed in Section 3, the BMOL pdf does not have mode when a ≤ 1, which

implies a greater skewness for these values of the parameter a, as illustrated in

Figure 3(a). Similarly, note that the skewness increases when b > 1, obtaining

negative values when b, α > 2. In addition, note that the kurtosis decreases when

the values of the parameters b and α increase, as illustrated in Figures 3(b), 1(c)

and 1(d).

6. MOMENTS

The moments ofX with cdf given by (2.6) can be expressed from the (r, k)-th

probability weighted moment (PWM) of a random variable Y with baseline cdf

G(x) and pdf g(x), which is defined, for r, k = 0, 1, ..., by

ωr,k = E

[
Y r Gk

(Y )

]
=

∫ ∞

0
yr Gk

(y) g(y) dy.

Setting u = G(y), we obtain

ωr,k =

∫ 1

0
Qr

G(u)uk du,(6.1)

where QG(u) is the qf of G(x).

The r-th ordinary moment of X, with r ∈ N, follows from (4.3), for c > 1,

as

µ′r = E(Xr
) =

∞∑

k=0

∫ ∞

0
xrsk+1 hk+1(x) dx,

where it is possible to exchange the infinite sum and the integral using the domi-

nated convergence theorem. By using (6.1) and hk+1(x) = (k+ 1) g(x)Gk
(x), we

obtain

µ′r =

∞∑

k=0

(k + 1) sk+1

∫ 1

0
Qr

G(u)uk du =

∞∑

k=0

(k + 1) sk+1 ωr,k.(6.2)

Equation (6.2) reveals that the moments of the BMOL distribution can be ex-

pressed as an infinite weighted sum of the baseline PWMs.

If G(x) is the Lomax cdf (with λ = 1), we obtain, using the binomial ex-

pansion,

Qr
G(z) =

[
1

(1 − z)1/α
− 1

]r

=

r∑

j=0

(
r

j

)
(−1)

r+j

(1 − z)j/α
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and therefore, from equation (6.1),

ωr,k =

r∑

j=0

(−1)
r+j

(
r

j

)∫ 1

0

uk

(1 − u)j/α
du.(6.3)

As a result, from (6.2) and (6.3), we obtain that µ′r <∞ for r < α and µ′r = ∞
for 0 < α ≤ r, a condition that also holds for the Lomax distribution.

We can express the r-th ordinary moment of X as a linear combination of

the r-th ordinary moments of Lomax random variables. In fact, for j = 0, 1, ...,

let αj = (j + 1)α. By applying the dominated convergence theorem and using

equation (4.5), we can write, for c > 1,

µ′r =

∞∑

j=0

pj

∫ ∞

0
xrg(x;αj , 1) dx =

∞∑

j=0

pj E(Y r
j ),

where Yj ∼ Lomax(αj , 1).

From the equality E(Y r
j ) = Γ(r + 1)Γ(αj − r)/Γ(αj), for r < αj , (see [16]),

we obtain

µ′r = Γ(r + 1)

∞∑

j=0

pj
Γ(αj − r)

Γ(αj)
, r < αj , ∀j.(6.4)

Equations (6.2) and (6.4) are the main results of this section. However, the

moments of X can be determined from (6.4) more easily than from (6.2).

7. GENERATING FUNCTION

A formula for the moment generating function (mgf) M(t) = E(e
tX

) of

X ∼ BMOL(a, b, c, α) follows from (4.3) as

M(t) =

∞∑

k=0

(k + 1) sk+1 ρk(t),(7.1)

where

ρk(t) =

∫ ∞

0
e
tx g(x)Gk

(x) dx.

We can obtain an expansion for ρk(t), with t < 0 and α ∈ N, using the

upper incomplete gamma function, which is defined as

Γ(υ, z) =

∫ ∞

z
xυ−1

e
−x dx, υ ∈ R, z > 0.(7.2)
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In fact, setting w = 1 + x, we have

ρk(t) =

∫ ∞

1
e
t(w−1) g(w − 1)Gk

(w − 1) dw = α

∫ ∞

1
e
t(w−1)w−α−1

(1 − w−α
)
k dw.

Using the binomial expansion, we have

(1 − w−α
)
k

=

k∑

j=0

(−1)
j

(
k

j

)
w−jα,

which leads to

ρk(t) = α
k∑

j=0

(−1)
αj−j+1

(
k

j

)
tαj+1

e
|t|

∫ ∞

1
e
−|t|w

(|t|w)
−αj−1 dw, t < 0, α ∈ N,

Since α ∈ N, then αj = (j + 1)α ∈ N for all j, which ensures that the quantity

(−1)
αj−j+1

in the above expression is a real number. Finally, using (7.2), we

obtain

ρk(t) = α
k∑

j=0

(−1)
αj−j

(
k

j

)
tαj e

|t|
Γ(−αj , |t|), t < 0, α ∈ N.(7.3)

Equations (7.1) and (7.3) are the main results of this section.

8. MEAN DEVIATIONS AND BONFERRONI AND LORENZ

CURVES

As before, for j = 0, 1, ..., let Yj ∼ Lomax(αj , 1). The mean deviations

of X ∼ BMOL(a, b, c, α) about the mean, δ1 = E|X − µ′1| (with 1 < αj , ∀j), and

about the median, δ2 = E|X −M |, can be expressed as

δ1 = 2µ′1 F (µ′1) − 2m
(1)
X (µ′1), δ2 = µ′1 − 2m

(1)
X (M),

where µ′1 is the first ordinary moment of X given by (6.4), m
(1)
X (z) =

∫ z
0 xf(x) dx

denotes the first incomplete moment of X, M = Q(0.5) is the median of X and

Q(·) is given by (5.1). The mean deviations δ1 and δ2 are used frequently as

dispersion measures.

Using (4.5), we can write

m
(1)
X (z) =

∞∑

j=0

pj

∫ z

0
x g(x;αj , 1) dx =

∞∑

j=0

pj m
(1)
Yj

(z),(8.1)

where m
(1)
Yj

=
∫ z
0 x g(x;αj , 1) dx denotes the first incomplete moment of Yj and pj

is given by (4.6). For computing δ1 and δ2, we use (2.6), (6.4) and (8.1).
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The incomplete moments can be applied to obtain the Bonferroni and

Lorenz curves [1], which are useful in several areas. The Bonferroni and Lorenz

curves are defined, respectively, by

B(π) =
m

(1)
X (q)

πµ′1
, L(π) = π B(π),

where q = Q(π) is evaluated from (5.1) for 0 < π < 1.

9. ENTROPY

Entropy is a measure of disorder or uncertainty. Two variants of entropy are

generally used, the Shannon and Rényi entropies [5]. The latter is a generalization

of the first.

For a random variable X ∼ BMOL(a, b, c, α), it is easier to obtain an ex-

plicit expression for the Shannon entropy than for the Rényi entropy. The Shan-

non entropy of an absolutely continuous random variable X with pdf f(x) is

defined by

ηX = Ef{− log[f(X)]} = −
∫ ∞

0
log[f(x)] f(x) dx.

Considering that W [G(x)] is an absolutely continuous distribution with

density g(x)w[G(x)], where G(x) is the baseline distribution and w(z) = W ′
(z)

(see Section 2), it can be proved that the density f(x) satisfies

Ef{log (W [G(X)])} = −ξ(a, b),

Ef{1 − log (W [G(X)])} = −ξ(b, a),

Ef{log (w[G(X)])} + Ef{log[g(X)]} − EU{log[w(U)]} − EU{log (g[QG(U)])} = 0,

where ξ(a, b) = − ∂
∂a log[B(a, b)] = ψ(a+ b) − ψ(a), ψ(·) denotes the digamma

function and U ∼ Beta(a, b).

From the equalities w(z) = c/[c+ (1 − c)z]2 (with c 6= 1) and g(QG(u)) =

α(1 − u)(α+1)/α
, we obtain

EU{log[w(U)]} = log c− 2 EU{log[c+ (1 − c)U ]},

EU{log(g[QG(U)])} = logα+
α+ 1

α
EU [log(1 − U)].



The Beta Marshall–Olkin Lomax Distribution 335

Further, we have

EU{log(1 − U)} =
1

B(a, b)

∫ 1

0
log(1 − u)ua−1

(1 − u)b−1 du

= −ξ(b, a),

EU{log[c+ (1 − c)U ]} =
1

B(a, b)

∫ 1

0
log[c+ (1 − c)u]ua−1

(1 − u)b−1 du

= log c− Ia,b,c 3F2(1, 1, 1 + a; 2, 1 + a+ b;
c− 1

c
),

where Ia,b,c =
a (c−1)
c (a+b) and pFq(a1, ..., ap; b1, ..., bq; z) is the generalized hypergeo-

metric function.

Thus, we can write

ηX = log[B(a, b)] + (a− 1) ξ(a, b) +

(
b− 1 +

α+ 1

α

)
ξ(b, a) + log c− logα

− 2 Ia,b,c 3F2(1, 1, 1 + a; 2, 1 + a+ b;
c− 1

c
).

The Shannon entropy is relevant because it is related to other notions of

entropy in various areas such as probability theory, computer sciences, dynamical

systems and statistical physics.

10. ORDER STATISTICS

LetX1, ..., Xn be a random sample of size n from a distribution F (x). Then,

the pdf of the m-th order statistic, X(m), is given by [26, p. 218]

f(m)(x) = K Fm−1
(x)(1 − F (x))n−mf(x),

where K = n!/[(m− 1)! (n−m)!].

For 1 ≤ m ≤ n, we obtain

f(m)(x) = K f(x)
n−m∑

j=0

(−1)
j

(
n−m

j

)
Fm+j−1

(x).

Based on (4.1) and (4.2) and using an expansion for power series raised to positive

integer powers [11, p. 17], we have, for c > 1,

Fm+j−1
(x) =

(
∞∑

k=0

sk G
k
(x)

)m+j−1

=

∞∑

k=0

vj,k G
k
(x),
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where G(x) is the baseline distribution given in (2.4) (with λ = 1), vj,0 = sm+j−1
0

and, for i ≥ 1,

vj,i =
1

i s0

i∑

l=1

[(m+ j)l − i] sl vj,i−l.

Therefore, we obtain

f(m)(x) = Kf(x)

n−m∑

j=0

∞∑

k=0

(−1)
j

(
n−m

j

)
vj,k G

k
(x),

where the density f(x) is given in (2.9).

Considering the BMO-G family, Alizadeh et al. [3] propose other expansion

for f(m)(x) given by

f(m)(x) =

∞∑

r,k=0

pr,k hr+k+1(x),(10.1)

where hr+k+1(x) denotes the exp-G density function with parameter r + k + 1,

pr,k =
n! (r + 1) (m− 1)! sr+1

r + k + 1

n−m∑

j=0

(−1)
j vj,k

(n−m− j)! j!
,

and sr is given in (4.2) for c > 1.

Equation (10.1) reveals that, for the BMO-G family, the density function

f(m)(x) of the m-th order statistic X(m) can be expressed as a linear combination

of exp-G densities. Therefore, some structural properties of X(m) can be obtained

from those of the exp-G distribution [13].

11. MAXIMUM LIKELIHOOD ESTIMATION

Several approaches for parameter estimation were proposed in the statistical

literature but the maximum likelihood method is the most commonly employed.

The MLEs enjoy desirable properties for constructing confidence intervals. In

this section, we estimate the parameters of the BMOL distribution by maximum

likelihood for complete data sets. Let x = (x1, ..., xn)
⊤

be a sample of size n

from X ∼ BMOL(a, b, c, α) and θ = (a, b, c, α)
⊤

the parameter vector. The log-

likelihood for θ corresponding to the sample x, denoted by ℓf (θ;x), is given

by

ℓf (θ;x) = − n log[B(a, b)] + (a− 1)

n∑

i=1

log{W [G(xi)]}

+ (b− 1)

n∑

i=1

log{1 −W [G(xi)]} +

n∑

i=1

log{w[G(xi)]} + ℓg(α;x),
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where ℓg(α;x) =
∑n

i=1 log[g(xi)] is the log-likelihood for the Lomax parameters

(with λ = 1). From (2.4) and (2.7), we can write

log{W [G(xi)]} = log

[
(1 + x)α − 1

(1 + x)α + c− 1

]
,

log{1 −W [G(xi)]} = log

[
c

(1 + x)α + c− 1

]
,

log{w[G(xi)]} = log

{
c (1 + x)2α

[(1 + x)α + c− 1]
2

}
.

Then,

ℓf (θ;x) = − n log[B(a, b)] + (a− 1)

n∑

i=1

log

[
(1 + xi)

α − 1

(1 + xi)
α + c− 1

]
(11.1)

+ (b− 1)

n∑

i=1

log

[
c

(1 + xi)
α + c− 1

]

+

n∑

i=1

log

{
c (1 + xi)

2α

[(1 + xi)
α + c− 1]

2

}
+ ℓg(α;x).

The MLE θ̂n of θ can be obtained by maximizing (11.1) directly by using

SAS (PROC NLMIXED), R (optim and MaxLik functions) or Ox program (sub-routine

MaxBFGS). Details for fitting univariate distributions using maximum likelihood

in R for censored or non censored data can be obtained at

http://www.inside-r.org/packages/cran/fitdistrplus/docs/mledist

[Accessed 28 02 2017].

Alternatively, we can obtain the components of the score vector Uθ =

(Ua, Ub, Uc, Uα)
⊤

and set them to zero. They are given by

Ua =
∂

∂a
ℓf (θ;x) =n[ψ(a+ b) − ψ(a)] +

n∑

i=1

log

[
(1 + xi)

α − 1

(1 + xi)
α + c− 1

]
,

Ub =
∂

∂b
ℓf (θ;x) =n[ψ(a+ b) − ψ(b)] +

n∑

i=1

log

[
c

(1 + xi)
α + c− 1

]
,

Uc =
∂

∂c
ℓf (θ;x) =

1

c

n∑

i=1

b [(1 + xi)
α − 1] − c− a+ 1

(1 + xi)
α + c− 1

,

Uα =
∂

∂α
ℓf (θ;x) =

n

α
−

n∑

i=1

log(1 + xi)

+

n∑

i=1

log(1 + xi)

(1 + xi)
α + c− 1

[2(c− 1) − (b− 1)(1 + xi)
α
]

+ c(a− 1)

n∑

i=1

(1 + xi)
α

log(1 + xi)

[(1 + xi)
α − 1] [(1 + xi)

α + c− 1]
.
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The MLE θ̂n is obtained by solving the equations Ua = Ub = Uc = Uα = 0 simul-

taneously. Because they can not be solved in closed-form, numerical iterative

Newton–Raphson type algorithms can be applied.

Under general regularity conditions, we have (θ̂n − θ) a∼ N4(0,K(θ)−1
),

where K(θ) is the 4 × 4 expected information matrix and
a∼ denotes asymptotic

distribution. For n large, K(θ) can be approximated by the observed information

matrix. This normal approximation for the MLE θ̂n can be used for construing

approximate confidence intervals and for testing hypotheses on the parameters

a, b, c and α.

Suppose that the parameter vector is partitioned as θ = (ψ⊤
1 ,ψ

⊤
2 )

⊤
, where

dim(ψ1) + dim(ψ2) = dim(θ). The likelihood ratio (LR) statistic for testing the

null hypothesis H0 : ψ1 = ψ
(0)
1 against the alternative hypothesis H1 : ψ1 6= ψ

(0)
1

is given by LRn = 2 {ℓf (θ̂n)−ℓf (θ̃n)}, where θ̂n = (ψ̂
⊤

1 , ψ̂
⊤

2 )
⊤
, θ̃n = (ψ

(0)⊤

1 , ψ̃
⊤
2 )

⊤
,

ψ̂i and ψ̃i are the MLE’s under the alternative and null hypotheses, respectively,

and ψ
(0)
1 is a specified parameter vector. Based on the first-order asymptotic

theory, we know that LR
a∼ χ2

k, where k = dim(ψ1). Thus, we can compute the

maximum values of the unrestricted and restricted log-likelihoods to obtain LR

statistics for testing some sub-models of the BMOL distribution (see Table 1).

12. SIMULATION STUDY

In this section, we perform a Monte Carlo simulation experiment to eva-

luate the behavior of the MLE θ̂n = (ân, b̂n, ĉn, α̂n) in finite samples and estimate

the relative biases and mean squared errors (MSEs) of the estimates for differ-

ent sample sizes n. We consider 10,000 Monte Carlo replications and use the

Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm with analytical deriva-

tives to maximize the log-likelihood function (11.1). We set the parameter values

a = 0.5, c = 0.25 and vary b and α. All computations are performed using the

C programming language and the GNU Scientific Library (version 2.1).

The results given in Table 2 reveal that, generally, the relative bias and

MSE values decrease when n increases, which is to be expected since the MLEs

are asymptotically unbiased. The minimum absolute values for the relative biases

and MSEs are equal to 0.003. In counterpart, the maximum absolute values for

the relative biases and MSEs are, respectively, 0.930 and 2.182. Further, it can be

noted in Table 2 that the parameter c was underestimated in some cases (negative

relative bias).
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Table 2: Relative bias and MSE values of the MLE θ̂n = (ân, b̂n, ĉn, α̂n)

(with a = 0.5 and c = 0.25).

relative bias MSE
b α n

ân b̂n ĉn α̂n ân b̂n ĉn α̂n

0.5

100 0.115 0.170 −0.003 0.326 0.035 0.184 0.037 0.268
0.5 200 0.052 0.119 −0.017 0.165 0.008 0.099 0.016 0.118

300 0.034 0.081 −0.013 0.114 0.004 0.059 0.010 0.075

100 0.113 0.180 0.015 0.297 0.040 0.187 0.045 0.544
0.75 200 0.051 0.118 −0.013 0.161 0.008 0.096 0.016 0.260

300 0.033 0.084 −0.011 0.110 0.004 0.060 0.010 0.167

0.75

100 0.093 0.092 0.080 0.598 0.035 0.382 0.170 0.602
0.5 200 0.044 0.060 −0.015 0.333 0.006 0.161 0.016 0.257

300 0.029 0.059 −0.024 0.219 0.004 0.124 0.009 0.149

100 0.090 0.113 0.118 0.544 0.036 0.424 0.241 1.166
0.75 200 0.042 0.065 −0.009 0.312 0.006 0.160 0.016 0.533

300 0.029 0.060 −0.021 0.209 0.004 0.122 0.009 0.323

1.0

100 0.089 0.032 0.183 0.930 0.027 0.577 0.175 1.131
0.5 200 0.046 0.010 0.011 0.551 0.005 0.256 0.022 0.504

300 0.031 0.010 −0.008 0.388 0.003 0.191 0.012 0.295

100 0.083 0.071 0.251 0.835 0.024 1.279 0.404 2.182
0.75 200 0.044 0.023 0.018 0.506 0.005 0.260 0.024 0.999

300 0.030 0.015 −0.006 0.363 0.003 0.186 0.012 0.609

13. APPLICATION

In this section, the potentiality of the BMOL distribution is proved em-

pirically by means of one lifetime application. We use an uncensored data set

corresponding to 84 observations on service times for failured windshields [21,

Table 16.11] and fit the BMOL distribution and its sub-models (see Table 1) to

these data. All computations are performed using the R software (version 3.0.2,

AdequacyModel package). The descriptive statistics for the current data are given

in Table 3.

Table 3: Descriptive statistics for the service times data.

min. 1st quantile median mean 3rd quantile max.

0.040 1.839 2.354 2.557 3.393 4.663



340 C.J. Tablada and G.M. Cordeiro

For maximizing the log-likelihood function (11.1), we use the BFGS algo-

rithm with numerical derivatives. The MLEs are given in Table 4 (with standard

errors in parentheses). For purposes of comparison, we compute some goodness-

of-fit statistics: Akaike Information Criterion (AIC), Bayesian Information Cri-

terion (BIC), Hannan–Quinn Information Criterion (HQIC), Cramér–von Mises

Criterion (W*) and Anderson–Darling Criterion (A*) [6]. In general, small val-

ues of these statistics suggest a better fit. We also include in the comparison the

exponentiated-Weibull (EW) distribution [20], since it is a widely used lifetime

model. Its cdf and pdf are given, respectively, by

R(x) =

[
1 − e

−(
x
α)

β
]η

and r(x) =
βη

α

(x
α

)β−1
[
1 − e

−(
x
α)

β
]η−1

e
−(

x
α)

β

,

where x ≥ 0 and α, β, η > 0.

Table 4: MLEs and standard errors for the service times data.

MLE
Distribution

â b̂ ĉ α̂ β̂
η̂

Lomax(α, 1) — — —
0.824

— —
(0.090)

MOEL(c, 1, α) — —
441.875 4.957

— —
(242.694) (0.424)

BL(a, b, α, 1)
6.664 38.687

—
0.133

— —
(1.055) (79.332) (0.254)

Kw−GL(a, b, α, 1)
4.378 244.216

—
0.254

— —
(0.517) (213.820) (0.083)

BMOL(a, b, c, α)
1.377 6.243 209.269 2.954

— —
(0.356) (5.526) (143.799) (0.627)

EW(α, β, η) — — —
3.972 5.958 0.271

(0.136) (0.255) (0.036)

The goodness-of-fit values for the fitted distributions are listed in Table 5.

Based on the figures in Table 5, we note that the EW distribution presents

the smaller values of the AIC, BIC and HQIC statistics. On the other hand,

the BMOL distribution presents the smaller values of the W* and A* statistics.

Since the BMOL and EW distributions are non-embedded models, a comparison

between them is more appropriate by means of these statistics. Also, note that

the BMOL model presents the smaller value of the AIC statistic among all its

sub-models and the smaller values of the BIC and HQIC statistics comparatively

with the Lomax, BL and Kw-GL distributions. Therefore, we can conclude that
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the BMOL distribution gives the best fit to the current data. If a minimum

number of parameters is taken into account, the MOEL or EW distributions can

be chosen, since these also has less parameters.

Table 5: Goodness-of-fit statistics for the service times data.

Statistic
Distribution

AIC BIC HQIC W* A*

Lomax(α̂, 1) 406.442 408.873 407.419 0.562 3.786
MOEL(ĉ, 1, α̂) 266.987 271.849 268.942 0.068 0.650

BL(â, b̂, α̂, 1) 312.806 320.098 315.737 0.553 3.737

Kw−GL(â, b̂, α̂, 1) 282.938 290.230 285.869 0.175 1.463

BMOL(â, b̂, ĉ, α̂) 265.694 275.417 269.602 0.0480.0480.048 0.4870.4870.487

EW(α̂, β̂, η̂) 261.208261.208261.208 268.501268.501268.501 264.140264.140264.140 0.129 0.831

To analyze how significant are the parameters of the BMOL distribution in

modeling the current data, we use the LR statistic, as discussed in Section 11, for

testing the BMOL model versus its sub-models listed in Table 1. The results are

given in Table 6. Based on the figures in this table, we note that the rejection of

the null hypotheses for the Lomax, MOEL, BL and Kw-GL models (at the 10%

significance level) is significant. So, we have evidence of the potential need for

including the parameters a, b and c to model the current data.

Table 6: LR tests for the service times data.

Models Hypotheses LR statistic p-value

Lomax vs. BMOL H0: a = b = c = 1 vs. H1: H0 is false 146.748 1.33 × 10−31

MOEL vs. BMOL H0: a = b = 1 vs. H1: H0 is false 5.294 7.09 × 10−2

BL vs. BMOL H0: c = 1 vs. H1: H0 is false 49.112 2.42 × 10−12

Kw−GL vs. BMOL H0: a = c = 1 vs. H1: H0 is false 19.244 6.63 × 10−5

The plots of the estimated densities for the EW, MOEL and BMOL distri-

butions are displayed in Figure 4. Based on these plots, it is possible to assess

the best overall fit of the BMOL distribution to the current data.
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Figure 4: Comparison of the EW, MOEL and BMOL estimated densities

for the service times data.

14. CONCLUSION AND FINAL REMARKS

In this chapter, we introduce a new four-parameter model, called the beta

Marshall–Olkin Lomax (BMOL) distribution, as a member of the beta Marshall–

Olkin generated (BMO-G) family [3] when the parent model is the Lomax dis-

tribution [17] (with λ = 1). Some sub-models of the BMOL distribution are

presented. The new distribution has simple expressions for the cumulative and

density functions. We study some of its mathematical and statistical properties.

We demonstrate that the BMOL density can be expressed as linear combinations

of Lomax and exponentiated-Lomax densities and therefore some of its struc-

tural properties can be obtained from those of these models. We present explicit

expressions for the quantile function, moments, generating function, mean de-

viations, Bonferroni and Lorenz curves, Shannon entropy and order statistics.

We obtain the maximum likelihood estimates for complete samples and perform

a Monte Carlo simulation in order to evaluate the behavior of these estimates

in finite samples. We compare the performance of the new model with other

related distributions including the exponentiated Weibull model using classical

goodness-of-fit statistics. The results confirm that the BMOL distribution is very

appropriate for lifetime applications.
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Abstract:

• The usual CUSUM chart for the mean (CUSUM-X̄) is a chart used to quickly detect

small to moderate shifts in a process. In presence of outliers, this chart is known to be

more robust than other mean-based alternatives like the Shewhart mean chart but it

is nevertheless affected by these unusual observations because the mean (X̄) itself is

affected by the outliers. An outliers robust alternative to the CUSUM-X̄ chart is the

CUSUM median (CUSUM-X̃) chart, because it takes advantage of the robust proper-

ties of the sample median. This chart has already been proposed by other researchers

and compared with other alternative charts in terms of robustness, but its performance

has only been investigated through simulations. Therefore, the goal of this paper is

not to carry out a robustness analysis but to study the effect of parameter estima-

tion in the performance of the chart. We study the performance of the CUSUM-X̃
chart using a Markov chain method for the computation of the distribution and the

moments of the run length. Additionally, we examine the case of estimated parameters

and we study the performance of the CUSUM-X̃ chart in this case. The run length

performance of the CUSUM-X̃ chart with estimated parameters is also studied using

a proper Markov chain technique. Conclusions and recommendations are also given.
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• average run length; CUSUM chart; estimated parameters; median; order statistics.

AMS Subject Classification:

• 62G30, 62P30.



346 P. Castagliola, F.O. Figueiredo and P. Maravelakis



The CUSUM Median Chart for Known and Estimated Parameters 347

1. INTRODUCTION

A main objective for a product or a process is to continuously improve its

quality. This goal, in statistical terms, may be expressed as variability reduction.

Statistical Process Control (SPC) is a well known collection of methods aiming

at this purpose and the control charts are considered as the main tools to detect

shifts in a process. The most popular control charts are the Shewhart charts,

the Cumulative Sum (CUSUM) charts and the Exponentially Weighted Moving

Average (EWMA) charts. Shewhart type charts are used to detect large shifts in

a process whereas CUSUM and EWMA charts are known to be fast in detecting

small to moderate shifts.

The usual Shewhart chart for monitoring the mean of a process is the X̄

chart. It is very efficient for detecting large shifts in a process (see for example

Teoh et al., 2014). An alternative chart used for the same purpose is the median

(X̃) chart. The median chart is simpler than the X̄ chart and it can be easily

implemented by practitioners. The main advantages of the X̃ chart over the X̄

chart is its robustness against outliers, contamination or small deviations from

normality. This property is particularly important for processes running for a

long time. Usually, in such processes, the data are not checked for irregular

behaviour and, therefore, the X̃ chart is an ideal choice.

The CUSUM-X̄ control chart has been introduced by Page (1954). It is

able to quickly detect small to moderate shifts in a process. The CUSUM-X̄

control chart uses information from a long sequence of samples and, therefore,

it is able to signal when a persistent special cause exists (see for instance Nenes

and Tagaras (2006) or Liu et al. (2014)). However, since it is mean-based, the

CUSUM-X̄ suffers from the inefficiency of the mean X̄ to correctly handle out-

liers, contamination or small deviations from normality. A natural alternative

solution to overcome this problem is the CUSUM-X̃ chart. This chart has al-

ready been proposed by Yang et al. (2010). In their paper they compare its

performance with the Shewhart, EWMA and CUSUM charts for the mean under

some contaminated normal distributions using only simulation procedures. This

chart has also been considered by Nazir et al. (2013a), again in a simulation study

with other CUSUM charts, in order to compare their performance for the phase

II monitoring of location in terms of robustness against non-normality, special

causes of variation and outliers.

In the last decades, different types of control charts for variable and count

data based on CUSUM schemes, in univariate or multivariate cases, were pro-

posed in the literature. Here we only mention some recent and less traditional

works on robust and enhanced CUSUM schemes, nonparametric and adaptive

CUSUM control charts and CUSUM charts for count and angular data. The
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interested reader could also take into account the references in the paper that

follow.

Ou et al. (2011, 2012) carried out a comparative study to evaluate the

performance and robustness of some typical X, CUSUM and SPRT type control

charts for monitoring either the process mean or both the mean and variance,

also providing several design tables to facilitate the implementation of the opti-

mal versions of the charts. Nazir et al. (2013b), following the same methodology

used in Nazir et al. (2013a), but for monitoring the dispersion, considered several

CUSUM control charts based on different scale estimators, and analyzed its per-

formance and robustness. Qiu and Zhang (2015) investigated the performance

of some CUSUM control charts for transformed data in order to accommodate

deviations from the normality assumption when monitoring the process data, and

they compared its efficiency with alternative nonparametric control charts. To

improve the overall performance of the CUSUM charts to detect small, moderate

and large shifts in the process mean, Al-Sabah (2010) and Abujiya et al. (2015)

proposed the use of special sampling schemes to collect the data, such as the

ranked set sampling scheme and some extensions of it, instead of using the tradi-

tional simple random sampling. Saniga et al. (2006, 2012) discussed the economic

advantages of the CUSUM versus Shewhart control charts to monitor the process

mean when one or two components of variance exist in a process.

The use of nonparametric control charts has attracted the attention of re-

searchers and practitioners. Chatterjee and Qiu (2009) proposed a nonparametric

cumulative sum control chart using a sequence of bootstrap control limits to mon-

itor the mean, when the data distribution is non-normal or unknown. Li et al.

(2010b) considered nonparametric CUSUM and EWMA control charts based on

the Wilcoxon rank-sum test for detecting mean shifts, and they discussed the

effect of phase I estimation on the performance of the chart. Mukherjee et al.

(2013) and Graham et al. (2014) proposed CUSUM control charts based on the

exceedance statistic for monitoring the location parameter. Chowdhury et al.

(2015) proposed a single distribution free phase II CUSUM control chart based

on the Lepage statistic for the joint monitoring of location and scale. The perfor-

mance of this chart was evaluated by analyzing some moments and percentiles of

the run-length distribution, and a comparative study with other CUSUM charts

was provided. Wang et al. (2017) proposed a nonparametric CUSUM chart based

on the Mann–Whitney statistic and on a change point model to detect small shifts.

Wu et al. (2009) and Li and Wang (2010) proposed adaptive CUSUM con-

trol charts implemented with a dynamical adjustment of the reference parameter

of the chart to efficiently detect a wide range of mean shifts. Ryu et al. (2010) pro-

posed the design of a CUSUM chart based on the expected weighted run length

(EWRL) to detect shifts in the mean of unknown size. Li et al. (2010a) and

Ou et al. (2013) considered adaptive control charts with variable sampling inter-

vals or variable sample sizes to overcome the detecting ability of the traditional
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CUSUM. Liu et al. (2014) proposed an adaptive nonparametric CUSUM chart

based on sequential ranks that efficiently and robustly detects unknown shifts of

several magnitudes in the location of different distributions. Wang and Huang

(2016) proposed an adaptive multivariate CUSUM chart, with the reference value

changing dynamically according to the current estimate of the process shift, that

performs better than other competitive charts when the location shift is unknown

but falls within an expected range.

Some CUSUM charts for count data can be found in Saghir and Lin (2014),

for monitoring one or both parameters of the COM-Poisson distribution, in He

et al. (2014), for monitoring linear drifts in Poisson rates, based on a dynamic

estimation of the process mean level, and in Rakitzis et al. (2016), for monitoring

zero-inflated binomial processes. Recently, Lombard et al. (2017) developed and

analyzed the performance of distribution-free CUSUM control charts based on

sequential ranks to detect changes in the mean direction and dispersion of angular

data, which are of great importance to monitor several periodic phenomena that

arise in many research areas.

To update the literature review in Jensen et al. (2006) about the effects of

parameter estimation on control chart properties, Psarakis et al. (2014) provided

some recent discussions on this topic. We also mention the works of Gandy and

Kvaloy (2013) and Saleh et al. (2016), that suggest the design of CUSUM charts

with a controlled conditional performance to reduce the effect of the Phase I

estimation, avoiding at the same time the use of large amount of data. Such

charts are designed with an in-control ARL that exceeds a desired value with a

predefined probability, while guaranteeing a reduced effect on the out of control

performance of the chart.

In this paper we study the CUSUM-X̃ chart with known and estimated

parameters for monitoring the mean value of a normal process, a topic, as far

as we know, not yet studied in the literature, apart from simulation. The

CUSUM-X̃ chart is the most simple alternative to the CUSUM-X̄ in terms of

efficiency/robustness, when there is some chance of having small disturbances in

the process. For instance, it is possible to have a small percentage of outliers or

contamination along time, that does not affect the process location, and therefore

the chart must not signal in such cases. It is important to note that the goal of

this paper is not to monitor the capability of a capable but unstable process (as

this has already been done in Castagliola and Vannman (2008) and Castagliola

et al. (2009)), but to monitor the median of a process that must remain stable for

ensuring the quality of the products. The paper has three aims. The first aim is

to present the Markov chain methodology for the computation of the distribution

and the moments of the run length for the known and the estimated parameters

case. The second aim is to evaluate the performance of the CUSUM-X̃ chart in

the known and estimated parameters case in terms of the average run length and

standard deviation of the run length when the process is in- and out-of-control.
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The third aim is to help practitioners in the implementation of the CUSUM-

X̃ chart by giving the optimal pair of parameters for the chart with estimated

parameters to behave like the one with known parameters.

The outline of the paper is the following. In Section 2, we present the

definition and the main properties of the CUSUM-X̃ chart when the process

parameters are known, along with the Markov chain methodology dedicated to

the computation of the run length distribution of the chart and its moments. In

Section 3, we study the case of estimated parameters for the CUSUM-X̃ chart

and we also provide the modified Markov chain methodology for the computation

of the run length properties. A comparison between CUSUM-X̃ with known v.s.

estimated parameters is provided in Section 4. Finally, a detailed example is given

in Section 5, followed by some conclusions and recommendations in Section 6.

2. THE CUSUM-X̃ CHART WITH KNOWN PARAMETERS

In this paper we will assume that Yi,1, ..., Yi,n, i = 1, 2, ... is a Phase II

sample of n independent normal N(µ0 + δσ0, σ0) random variables where i is

the subgroup number, µ0 and σ0 are the in-control mean value and standard

deviation, respectively, and δ is the parameter representing the standardized mean

shift, i.e. the process is assumed to be in-control (out-of-control) if δ = 0 (δ 6= 0).

The upper-sided CUSUM-X̄ chart for detecting an increase in the process

mean plots

(2.1) Z+
i = max(0, Z+

i−1 + Ȳi − µ0 − k+
z )

against i, for i = 1, 2, ... where Ȳi is the mean value of the quality variable for

sample number i. The starting value is Z+
0 = z+

0 ≥ 0 and k+
z is a constant.

A signal is issued at the first i for which Z+
i ≥ h+

z , where h+
z is the upper control

limit. The corresponding lower-sided CUSUM-X̄ chart for detecting a decrease

in the process mean plots

(2.2) Z−
i = min(0, Z−

i−1 + Ȳi − µ0 + k−
z )

against i, for i = 1, 2, ... where k−
z is a constant and the starting value is Z−

0 =

z−0 ≤ 0. The chart signals at the first i for which Z−
i ≤ −h−

z , where −h−
z is the

lower control limit. There is a certain way to compute the values of k+
z , k−

z and

h+
z , h−

z which is related to the distribution of Yi’s. The textbook of Hawkins and

Olwell (1999) is an excellent reference on this subject.
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Now, let Ỹi be the sample median of subgroup i, i.e.

Ỹi =





Yi,((n+1)/2) if n is odd

Yi,(n/2) + Yi,(n/2+1)

2
if n is even

where Yi,(1), Yi,(2), ..., Yi,(n) is the ascendant ordered i-th subgroup. As the sample

median is easier and faster to compute when the sample size n is an odd value,

without loss of generality, we will confine ourselves to this case for the rest of this

paper.

The upper-sided CUSUM-X̃ chart for detecting an increase in the process

median is given by

(2.3) U+
i = max(0, U+

i−1 + Ỹi − µ0 − k+
)

where i is the sample number and Ỹi is the sample median. The starting value

is U+
0 = u+

0 ≥ 0 and k+
is a constant. A signal is issued at the first i for which

U+
i ≥ h+

, where h+
is the upper control limit. The corresponding lower-sided

CUSUM-X̃ chart for detecting a decrease in the process median plots

(2.4) U−
i = min(0, U−

i−1 + Ỹi − µ0 + k−
)

against i, for i = 1, 2, ... where k−
is a constant and the starting value is U−

0 =

u−
0 ≤ 0. The chart signals at the first i for which U−

i ≤ −h−
, where −h−

is the

lower control limit.

The mean value (ARL) and the standard deviation (SDRL) of the Run

Length distribution are two common measures of performance of control charts

that will be used in this work to design the CUSUM median chart. However we

note that other methodologies recently appeared in the literature for the design

of CUSUM charts. Li and Wang (2010), He et al. (2014) and Wang and Huang

(2016), among others, suggested to design the CUSUM chart with the reference

parameter dynamically adjusted according to the current estimate of the process

shift, in order to improve the sensitivity of the chart to detect a wide range

of shifts. Ryu et al. (2010) proposed the design of CUSUM charts based on

the expected weighted run length, a measure of performance more appropriate

than the usual ARL given that the magnitude of the shift is practically unknown.

These interesting approaches are promising and will be explored in a future work.

As in the classical approach proposed by Brook and Evans (1972), the

Run Length distribution of the upper-sided CUSUM-X̃ chart with known pa-

rameters can be obtained by considering a Markov chain with states denoted

as {0, 1, ..., r}, where state r is the absorbing state (the computations for the

lower-sided CUSUM-X̃ chart can be done accordingly). The interval from 0 to

h+
is partitioned into r subintervals (Hj − ∆, Hj + ∆], j ∈ {0, ..., r − 1}, each
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of them centered in Hj = (2j + 1)∆ (the representative value of state j), with

∆ =
h+

2r . The Markov chain is in transient state j ∈ {0, ..., r − 1} for sample i if

U+
i ∈ (Hj − ∆, Hj + ∆], otherwise it is in the absorbing state.

Let Q be the (r, r) submatrix of probabilities Qj,k corresponding to the r

transient states defined for the upward CUSUM-X̃ chart, i.e.

Q =




Q0,0 Q0,1 ··· Q0,r−1

Q1,0 Q1,1 ··· Q1,r−1
.
.
.

.

.

.
.
.
.

.

.

.

Qr−1,0 Qr−1,1 ··· Qr−1,r−1


 .

By definition, we have Qj,k = P (U+
i ∈ (Hk −∆, Hk +∆]|U+

i−1 = Hj), where

j ∈ {0, ..., r − 1} and k ∈ {1, ..., r − 1}. This is actually equivalent to Qj,k =

P (Hk − ∆ < Ỹ + Hj − µ0 − k+ ≤ Hk + ∆). This equation can be written as

Qj,k = P
(
Ỹ ≤ Hk − Hj + ∆ + k+

+ µ0

)
− P

(
Ỹ ≤ Hk − Hj − ∆ + k+

+ µ0

)

= FỸ

(
Hk − Hj + ∆ + k+

+ µ0

∣∣n
)
− FỸ

(
Hk − Hj − ∆ + k+

+ µ0

∣∣n
)
,

where FỸ (...|n) is the cumulative distribution function (c.d.f.) of the sample

median Ỹi, i ∈ {1, 2, ...}. For the computation of Qj,0, j ∈ {0, ..., r − 1} we have

that

Qj,0 = P
(
Ỹ ≤ −Hj + ∆ + k+

+ µ0

)

= FỸ

(
−Hj + ∆ + k+

+ µ0

∣∣n
)
.

The c.d.f. of the sample median Ỹ is given by

FỸ (y|n) = Fβ

(
Φ

(
y − µ0

σ0
− δ

) ∣∣∣∣
n + 1

2
,
n + 1

2

)
,

where Φ(x) and Fβ(x|a, b) are the c.d.f. of the standard normal distribution and

the beta distribution with parameters (a, b) (here, we have a = b =
n+1

2 ), respec-

tively.

Let q = (q0, q1, ..., qr−1)
T

be the (r, 1) vector of initial probabilities associ-

ated with the r transient states {0, ..., r − 1}, where

qj =

{
0 if U+

0 6∈ (Hj − ∆, Hj + ∆]

1 if U+
0 ∈ (Hj − ∆, Hj + ∆]

.

Using this method, the Run Length (RL) properties of the CUSUM-X̃

chart with known parameters can be accurately evaluated if the number r of

subintervals in matrix Q is sufficiently large. In this paper, we have fixed r = 200.

Using the results in Neuts (1981) or Latouche and Ramaswami(1999) concerning
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the fact that the number of steps until a Markov chain reaches the absorbing

state is a Discrete PHase-type (or DPH) random variable, the probability mass

function (p.m.f.) fRL(ℓ) and the c.d.f. FRL(ℓ) of the RL of the CUSUM-X̃ chart

with known parameters are respectively equal to

fRL(ℓ) = qTQℓ−1c,

FRL(ℓ) = 1 − qTQℓ1,

where c = 1−Q1 with 1 = (1, 1, ..., 1)
T
. Using the moment properties of a DPH

random variable also allows to obtain the mean (ARL), the second non-central

moment E2RL = E(RL2
) and the standard-deviation (SDRL) of the RL

ARL = ν1

E2RL = ν1 + ν2

SDRL =

√
E2RL − ARL2,

where ν1 and ν2 are the first and second factorial moments of the RL, i.e.

ν1 = qT
(I − Q)

−11,

ν2 = 2qT
(I − Q)

−2Q1.

3. THE CUSUM-X̃ CHART WITH ESTIMATED PARAMETERS

In real applications the in-control process mean value µ0 and the standard

deviation σ0 are usually unknown. In such cases they have to be estimated from a

Phase I data set, having i = 1, ..., m subgroups {Xi,1, ..., Xi,n} of size n. Following

Montgomery’s (2009, p. 193 and p. 238) recommendations, these subgroups must

be formed from observations taken in a time-ordered sequence in order to allow

the estimation of between-sample variability, i.e., the process variability over time.

The observations within a subgroup must be taken at the same time from a single

and stable process, or at least as closely as possible to guarantee independence

between them, to allow the estimation of the within-sample variability, i.e., the

process variability at a given time. Here we assume that there is independence

within and between subgroups, and also that Xi,j ∼ N(µ0, σ0). The estimators

that are usually used for µ0 and σ0 are

µ̂0 =
1

m

m∑

i=1

X̄i,(3.1)

σ̂0 =
1

c4(n)

(
1

m

m∑

i=1

Si

)
,(3.2)

where X̄i and Si are the sample mean and the sample standard deviation of

subgroup i, respectively. Constant c4(n) = E(
Si

σ0
) can be computed for different
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sample sizes n under normality. Although these estimators are usually used in

the mean (X̄) chart, they are not a straightforward choice with the median chart.

Keeping in mind that the median chart is based on order statistics, a more typical

selection of estimators based on order statistics is the following

µ̂′
0 =

1

m

m∑

i=1

X̃i,(3.3)

σ̂′
0 =

1

d2(n)

(
1

m

m∑

i=1

Ri

)
,(3.4)

where X̃i and Ri = Xi,(n) − Xi,(1) are the sample median and the range of sub-

group i, respectively, and d2(n) = E(
Ri

σ0
) is a constant tabulated assuming a nor-

mal distribution. Instead of the range we could have considered an estimator for

the standard deviation based on quantiles to achieve higher level of robustness

against outliers. The analysis of the properties of such CUSUM median chart is

cumbersome and we will apply this approach in a future work.

The standardised versions of the lower-sided and the upper-sided CUSUM-

X̃ chart with estimated parameters are given by

G−
i = min

(
0, G−

i−1 +
Ỹi − µ̂′

0

σ̂′
0

+ k−
g

)
,(3.5)

G+
i = max

(
0, G+

i−1 +
Ỹi − µ̂′

0

σ̂′
0

− k+
g

)
,(3.6)

respectively, where G−
0 = g−0 ≤ 0, G+

0 = g+
0 ≥ 0 with k−

g and k+
g being two con-

stants to be fixed. For the lower-sided (upper-sided) CUSUM-X̃ chart with esti-

mated parameters a signal is issued at the first i for which G−
i ≤ h−

g (G+
i ≥ h+

g ),

where h−
g (h+

g ) is the lower (upper) control limit.

Equations (3.5) and (3.6) can be equivalently written as

G−
i = min


0, G−

i−1 +

Ỹi−µ0

σ0
+

µ0−µ̂′

0

σ0

σ̂′

0

σ0

+ k−
g


 ,(3.7)

G+
i = max


0, G+

i−1 +

Ỹi−µ0

σ0
+

µ0−µ̂′

0

σ0

σ̂′

0

σ0

− k+
g


 .(3.8)

If we define the random variables V and W as V =
µ̂′

0
−µ0

σ0
and W =

σ̂′

0

σ0
,
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both G+
i and G−

i can be written as

G+
i = max


0, G+

i−1 +

Ỹi−µ0

σ0
− V

W
− k+

g


 ,(3.9)

G−
i = min


0, G−

i−1 +

Ỹi−µ0

σ0
− V

W
+ k−

g


 .(3.10)

Apparently, the decision about when a process is declared as out of control does

not change.

Both µ̂′
0 and σ̂′

0 are random variables, therefore V and W are also random

variables. Assuming that µ̂′
0 and σ̂′

0 have fixed values, which actually means that

V and W have fixed values, the conditional p.m.f. (denoted as f̂RL(ℓ)) of RL,

the conditional c.d.f. (denoted as F̂RL(ℓ)) of RL and the conditional factorial

moments (denoted as ν̂1 and ν̂2) can be computed through the equations given

in section 2. Therefore, if the joint p.d.f. f(V,W )(v, w|m, n) of V and W is known,

then the unconditional p.d.f. fRL(ℓ) and the unconditional c.d.f. FRL(ℓ) of the

Run Length of the upper-sided CUSUM-X̃ chart with estimated parameters are

equal to

fRL(ℓ) =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)f̂RL(ℓ)dwdv,(3.11)

FRL(ℓ) =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)F̂RL(ℓ)dwdv.(3.12)

Now we are ready to compute the unconditional ARL that is equal to

(3.13) ARL =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)ν̂1dwdv.

The unconditional SDRL is derived using the well known relationship

(3.14) SDRL =

√
E2RL − ARL2,

where

E2RL =

∫ +∞

−∞

∫ +∞

0
f(V,W )(v, w|m, n)(ν̂1 + ν̂2)dwdv.

Assuming normality, it is known that X̄i and S2
i are two independent statis-

tics. Consequently, µ̂0 and σ̂0 in equations (3.1) and (3.2) are also independent

statistics. However, X̃i and Ri are dependent statistics and so are µ̂′
0 and σ̂′

0 in

equations (3.3) and (3.4). Hogg (1960) proved that “an odd location statistic like

the sample median and an even scale location-free statistic like the sample range

are uncorrelated when sampling from a symmetric distribution”. On account of

the fact that we assume we are sampling from a normal distribution, the sample

median X̃i and the sample range Ri are uncorrelated statistics. Since µ̂′
0 and σ̂′

0
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are averaged quantities of X̃i and Ri respectively, the central limit theorem can

be used to conclude that their joint distribution asymptotically converges to a

bivariate normal distribution as m increases. Moreover, the fact that these statis-

tics are uncorrelated, leads us to the conclusion that the statistics µ̂′
0 and σ̂′

0 are

asymptotically independent (and so are V and W ). Therefore, the joint p.d.f.

f(V,W )(v, w|m, n) in equations (3.11)–(3.14) is well approximated by the product

of the marginal p.d.f. fV (v|m, n) of V and fW (w|m, n) of W , i.e.

(3.15) f(V,W )(v, w|m, n) ≃ fV (v|m, n) × fW (w|m, n).

To evaluate how large n has to be for equation (3.15) to hold, or instead,

to get approximately independence between the median and the range statistics

in case of normal data, we did some simulations, using the following algorithm.

1. We generated 100000 samples of size n = 3, 5, 7, 9, 11, 13, 15. Each ob-

servation Xij (i = 1, ..., 100000, j = 1, ..., n) follows a N(0,1) distribu-

tion;

2. Then, we computed the median (X̃) and the range (R) for these 100000

samples, i.e., we got the values X̃i and Ri, i = 1, ..., 100000.

3. Afterwards, we estimated the c.d.f. of the statistics X̃ and R, and the

joint c.d.f. of (X̃, R), i.e., the functions

• FX̃(xm) = P (X̃ ≤ xm), for several values of xm,

• FR(xr) = P (R ≤ xr), for several values of xr,

• FX̃,R(xm, xr) = P (X̃ ≤ xm ∩ R ≤ xr), for the combinations of

(xm, xr).

4. Finally, we computed the difference |FX̃,R(xm, xr)−FX̃(xm)×FR(xr)|
for all the combinations of (xm, xr), and we kept the maximum of these

differences.

Table 1: Maximum difference between the joint c.d.f. and the product

of the two marginal c.d.f. for some small sample sizes n.

Sample size n max |FX̃,R(xm, xr) − FX̃(xm) × FR(xr)|

3 0.01134
5 0.00838
7 0.00640
9 0.00529

11 0.00481
13 0.00402
15 0.00402
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The obtained results are presented in Table 1. As we can see, the difference

between the joint c.d.f. and the product of the two marginal c.d.f.’s is very small

and it gets smaller as n increases. This is not a proof of independence between X̃

and R, but for sure these statistics seem to be almost independent for small values

of n. We also notice that the estimates for the nominal values of the process are

the average of the medians and of the ranges, and consequently, the convergence

to independence is faster.

For the computation of fV (v|m, n) and fW (w|m, n) there is no known

closed-form, however, suitable approximations with satisfactory results are pro-

vided in Castagliola and Figueiredo (2013):

• The marginal p.d.f. fV (v|m, n), can be computed through the equation

fV (v|m, n) ≃ b√
(v − δ)2 + d2

φ

(
b sinh

−1

(
v − δ

d

))
,

where φ(x) is the p.d.f. of the standard normal distribution, and

b =

√
2

ln(
√

2(γ2(V ) + 2) − 1)
,

d =

√
2µ2(V )√

2(γ2(V ) + 2) − 2
,

with

µ2(V ) ≃ 1

m

(
π

2(n + 2)
+

π2

4(n + 2)2
+

π2
(

13
24π − 1

)

2(n + 2)3

)
,

γ2(V ) ≃ 2(π − 3)

m(n + 2)
;

• The marginal p.d.f. fW (w|m, n), can be computed through the equation

fW (w|m, n) ≃ 2νd2
2(n)w

c2
fχ2

(
νd2

2(n)w2

c2
|ν
)

,

where fχ2(x|ν) is the p.d.f. of the χ2
distribution with ν degrees of

freedom with

ν ≃


−2 + 2

√√√√√√1 + 2




B

A2
+

(
−2 + 2

√
1 +

2B
A2

)3

16







−1

,

c ≃ A

(
1 +

1

4ν
+

1

32ν2
− 1

128ν3

)
,

and A = d2(n), B =
d2

3
(n)
m where d2(n) and d3(n) are constants tabulated

for the normal case.



358 P. Castagliola, F.O. Figueiredo and P. Maravelakis

4. A COMPARISON

In this work we compute the mean and the standard deviation of the Run

Length distribution under the assumption that the scheme starts at the specified

initial value, and we denote them as ARL0,m and SDRL0,m when the process is in-

control, and as ARL1,m and SDRL1,m, when the process is out-of-control, where

m is the number of samples used in Phase I. We compare several control charts

implemented with known and estimated parameters, all with the same in-control

ARL value, here assumed equal to ARL0,m = 370.4. The chart that exhibits the

best performance to detect a specific shift size δ among its counterparts is the one

that has the smaller ARL1,m value for this specific shift. Due to the symmetry

of the Gaussian distribution, the performance of the charts are similar to detect

either an upward or a downward shift of the same magnitude in the process mean

value. Therefore we only concentrate our analysis on the performance of the

charts for δ ≥ 0.

Using equations (3.13) and (3.14) we computed the ARL1,m and SDRL1,m

values for several combinations of the sample size n, the number of samples m, and

the shift size δ. These values (ARL1,m, SDRL1,m) are present in Table 2, together

with the optimal set of parameters (H, K) for the specific n and δ values. The

value m = +∞ is associated with the known parameters case. In the estimated

parameters case the number of subgroups considered in the estimation is m =

5, 10, 20, 50, 100. The pairs (H, K) given in each line are optimal in the sense

that, among all the possible values of H and K, the noted pair gives the smallest

ARL1,m value for the case m = +∞. Setting h−
= h+

= H and k−
= k+

= K

in the CUSUM-X̃ charts defined in (2.3) and (2.4) allow us to obtain a control

chart with the ARL behavior described in Table 2. From Table 2 the following

conclusions are easily observed:

• The ARL1,m and SDRL1,m values in the known and estimated param-

eters cases are significantly different when the shift size δ or the number

of subgroups m is small. For example, in case of n = 3 and δ = 0.1,

the ARL1,m and SDRL1,m values are larger than 10
5

if m = 5, but for

m = ∞ we have ARL1,∞ = 98.7 and SDRL1,∞ = 69.9.

• If we take m = 20 subgroups of size n = 5 for the estimation of the

unknown process parameters, as usually happens, only for δ ≥ 1 we get

ARL1,m ≃ ARL1,∞.

• For δ small, even if m is relatively large, the ARL1,m values are larger

than the ones obtained in the case of known parameters. See, for ex-

ample, the case of m = 100 subgroups of size n = 9 (an overall sample

of size n×m = 900 observations): for δ = 0.1, we get an ARL1,m value

about 50% larger than the corresponding ARL1,∞.
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Table 2: ARL1,m, SDRL1,m, H, K values for different combinations of

n, m and δ.

n = 3
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (8.003, 0.0501) (> 105, > 105) (> 105, > 105) (> 105, > 105) (636.9, 60171.3) (165.7, 659.3) (98.7, 69.9)
0.2 (6.003, 0.0999) (> 105, > 105) (> 105, > 105) (2723.1, > 105) (76.7, 407.1) (55.9, 66.2) (46.5, 30.4)
0.3 (4.813, 0.1497) (> 105, > 105) (> 105, > 105) (98.3, 14407.4) (34.4, 49.9) (30.3, 25.5) (27.5, 17.1)
0.5 (3.444, 0.2489) (> 105, > 105) (63.6, 62917.8) (17.7, 47.5) (14.5, 11.3) (13.9, 9.2) (13.3, 7.7)
0.7 (2.666, 0.3478) (1039.6, > 105) (11.8, 165.9) (9.1, 8.6) (8.4, 5.5) (8.2, 4.9) (8.0, 4.4)
1.0 (1.965, 0.4951) (8.3, 2204.2) (5.3, 5.7) (4.9, 3.3) (4.7, 2.7) (4.7, 2.6) (4.6, 2.4)
1.5 (1.319, 0.7432) (2.8, 3.3) (2.6, 1.7) (2.5, 1.4) (2.5, 1.3) (2.5, 1.3) (2.5, 1.2)
2.0 (0.934, 0.9963) (1.7, 1.1) (1.6, 0.9) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8) (1.6, 0.8)

n = 5
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (5.903, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (275.2, 8232.2) (115.9, 281.0) (79.1, 54.7)
0.2 (4.269, 0.0999) (> 105, > 105) (> 105, > 105) (266.2, 49881.9) (48.3, 107.4) (39.9, 38.2) (35.1, 22.2)
0.3 (3.349, 0.1496) (> 105, > 105) (829.8, > 105) (37.1, 474.7) (23.4, 23.6) (21.6, 16.0) (20.2, 12.1)
0.5 (2.329, 0.2487) (1035.0, > 105) (16.5, 316.0) (11.3, 12.8) (10.1, 6.9) (9.8, 6.0) (9.5, 5.3)
0.7 (1.767, 0.3473) (14.5, 3462.5) (6.9, 10.9) (6.2, 4.5) (5.9, 3.5) (5.8, 3.2) (5.7, 3.0)
1.0 (1.270, 0.4949) (4.1, 11.7) (3.6, 2.6) (3.4, 2.0) (3.3, 1.8) (3.3, 1.7) (3.3, 1.7)
1.5 (0.812, 0.7467) (1.9, 1.3) (1.8, 1.0) (1.8, 0.9) (1.8, 0.9) (1.8, 0.9) (1.7, 0.9)
2.0 (0.511, 0.9990) (1.3, 0.6) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.4)

n = 7
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (4.749, 0.0500) (> 105, > 105) (> 105, > 105) (27291.2, > 105) (170.3, 2633.7) (90.9, 166.3) (67.0, 45.5)
0.2 (3.348, 0.0999) (> 105, > 105) (17933.4, > 105) (100.8, 5616.9) (36.2, 54.4) (31.6, 27.1) (28.6, 17.8)
0.3 (2.586, 0.1496) (> 105, > 105) (123.7, 36763.2) (24.0, 102.8) (18.0, 15.6) (17.0, 11.8) (16.2, 9.5)
0.5 (1.762, 0.2487) (60.7, 50167.3) (10.5, 42.8) (8.5, 7.4) (7.8, 5.0) (7.7, 4.5) (7.5, 4.1)
0.7 (1.316, 0.3472) (7.0, 114.4) (5.1, 4.9) (4.7, 3.1) (4.6, 2.6) (4.5, 2.5) (4.5, 2.3)
1.0 (0.926, 0.4963) (3.0, 3.3) (2.7, 1.8) (2.6, 1.5) (2.6, 1.4) (2.6, 1.3) (2.6, 1.3)
1.5 (0.557, 0.7484) (1.5, 0.8) (1.4, 0.7) (1.4, 0.7) (1.4, 0.6) (1.4, 0.6) (1.4, 0.6)
2.0 (0.286, 0.9998) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3) (1.1, 0.3)

n = 9
δ (H, K)

m = 5 m = 10 m = 20 m = 50 m = 100 m = ∞

0.1 (4.007, 0.0500) (> 105, > 105) (> 105, > 105) (7728.6, > 105) (123.1, 1171.1) (75.7, 115.1) (58.7, 39.3)
0.2 (2.770, 0.0999) (> 105, > 105) (2714.7, > 105) (58.7, 1396.9) (29.4, 35.5) (26.4, 21.0) (24.3, 14.9)
0.3 (2.114, 0.1496) (24658.7, > 105) (48.4, 4394.4) (18.2, 42.2) (14.8, 11.7) (14.2, 9.4) (13.6, 7.9)
0.5 (1.416, 0.2487) (19.3, 2775.4) (7.9, 15.3) (6.9, 5.3) (6.5, 4.0) (6.4, 3.6) (6.3, 3.4)
0.7 (1.044, 0.3474) (5.0, 20.6) (4.1, 3.3) (3.9, 2.4) (3.8, 2.1) (3.7, 2.0) (3.7, 1.9)
1.0 (0.721, 0.4976) (2.4, 2.0) (2.2, 1.3) (2.2, 1.2) (2.2, 1.1) (2.1, 1.1) (2.1, 1.1)
1.5 (0.399, 0.7493) (1.3, 0.6) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5)
2.0 (0.140, 0.9999) (1.0, 0.2) (1.0, 0.2) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1)

• Moreover, the practical result referred in Quesenberry (1993), that an

overall sample of size n×m = 400 enables to design control charts with

estimated control limits with a similar performance to the corresponding

chart with true limits does not hold in the case of CUSUM-X̃ charts (see,

for instance, the ARL1,m and SDRL1,m values for small values of δ and,

in particular, for δ = 0.1).

• However, as the number of samples m increases the ARL1,m and SDRL1,m

values converge to the values of the known parameters case, for each

shift, although very slowly. In particular, when δ becomes large, the

difference between the ARL1,m and SDRL1,m values in the known and

estimated parameters cases tends to be non-significant. But the CUSUM

charts are more attractive and efficient than the Shewhart charts for
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detecting small changes, and thus, it is important to determine optimal

parameters H ′
and K ′

in order to guarantee the desired performance

even for m or δ small.

For completeness, in Table 3 we also present the in-control ARL0,m and

SDRL0,m values for the same pairs (H, K) considered in Table 2. As in Table 2,

we observe again that, as m increases, the ARL0,m and SDRL0,m values converge

very slowly to the known parameters case values. As we can observe more than

m = 100 samples are often needed to implement charts with known and estimated

parameters with similar performance.

Table 3: ARL0,m, SDRL0,m, H, K values for several pairs of n and m
when the process is in-control.

n = 3
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(8.003, 0.0501) (> 105, > 105) (> 105, > 105) (> 105, > 105) (15540.8, > 105) (1429.9, 16918.4)
(6.003, 0.0999) (> 105, > 105) (> 105, > 105) (> 105, > 105) (2989.3, > 105) (865.0, 3768.4)
(4.813, 0.1497) (> 105, > 105) (> 105, > 105) (70529.8, > 105) (1517.3, 17422.5) (682.9, 1905.6)
(3.444, 0.2489) (> 105, > 105) (> 105, > 105) (5501.3, > 105) (853.9, 3474.9) (544.3, 1032.7)
(2.666, 0.3478) (> 105, > 105) (48309.8, > 105) (2109.7, 49864.4) (663.5, 1754.4) (488.1, 777.8)
(1.965, 0.4951) (> 105, > 105) (5812.4, > 105) (1114.4, 7639.5) (548.4, 1066.1) (447.5, 622.0)
(1.319, 0.7432) (20921.5, > 105) (1593.5, 24654.9) (704.3, 2093.0) (470.9, 717.4) (416.6, 515.1)
(0.934, 0.9963) (3608.3, > 105) (952.1, 4648.1) (572.8, 1184.7) (437.6, 587.0) (402.1, 466.6)

n = 5
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(5.903, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (7577.1, > 105) (1192.1, 9102.0)
(4.269, 0.0999) (> 105, > 105) (> 105, > 105) (> 105, > 105) (1883.9, 25530.6) (747.4, 2380.3)
(3.349, 0.1496) (> 105, > 105) (> 105, > 105) (11797.0, > 105) (1092.2, 6198.7) (605.9, 1346.7)
(2.329, 0.2487) (> 105, > 105) (33318.5, > 105) (2239.1, 38019.5) (691.1, 1873.1) (498.4, 812.6)
(1.767, 0.3473) (> 105, > 105) (5584.4, > 105) (1183.7, 7401.6) (565.8, 1128.0) (454.9, 643.8)
(1.270, 0.4949) (17364.4, > 105) (1774.2, 22295.1) (756.6, 2351.7) (485.6, 767.9) (423.1, 534.6)
(0.812, 0.7467) (2555.9, 62815.4) (872.2, 3340.4) (555.7, 1078.3) (433.5, 571.3) (400.4, 461.0)
(0.511, 0.9990) (1497.0, 14155.3) (696.7, 1890.8) (500.9, 824.3) (416.6, 511.7) (392.6, 435.7)

n = 7
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(4.749, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (5134.7, > 105) (1060.8, 6361.6)
(3.348, 0.0999) (> 105, > 105) (> 105, > 105) (33886.4, > 105) (1474.5, 12982.1) (683.9, 1848.5)
(2.586, 0.1496) (> 105, > 105) (> 105, > 105) (5777.0, > 105) (918.3, 3825.0) (564.8, 1115.2)
(1.762, 0.2487) (> 105, > 105) (10278.2, > 105) (1538.4, 13243.4) (619.3, 1401.7) (474.6, 715.3)
(1.316, 0.3472) (48309.2, > 105) (2766.0, 57099.5) (921.1, 3705.8) (521.7, 913.9) (438.0, 583.3)
(0.926, 0.4963) (4897.4, > 105) (1170.3, 6580.6) (638.6, 1505.7) (457.4, 656.4) (411.1, 495.0)
(0.557, 0.7484) (1671.5, 17793.4) (734.8, 2135.8) (514.2, 880.8) (421.0, 526.9) (394.7, 442.4)
(0.286, 0.9998) (1282.1, 9130.3) (652.2, 1599.9) (485.7, 760.6) (411.7, 494.9) (390.3, 428.3)

n = 9
(H, K)

m = 5 m = 10 m = 20 m = 50 m = 100

(4.007, 0.0500) (> 105, > 105) (> 105, > 105) (> 105, > 105) (3935.5, > 105) (974.1, 4940.8)
(2.770, 0.0999) (> 105, > 105) (> 105, > 105) (17455.0, > 105) (1253.9, 8409.7) (642.6, 1558.6)
(2.114, 0.1496) (> 105, > 105) (> 105, > 105) (3795.7, > 105) (819.6, 2826.8) (538.3, 983.3)
(1.416, 0.2487) (> 105, > 105) (5549.9, > 105) (1230.8, 7364.1) (576.9, 1169.2) (459.4, 657.7)
(1.044, 0.3474) (14888.5, > 105) (1880.1, 19722.5) (790.3, 2495.0) (494.9, 799.0) (427.2, 546.5)
(0.721, 0.4976) (2879.4, 59731.6) (946.2, 3818.3) (580.8, 1186.6) (441.5, 598.3) (404.1, 472.5)
(0.399, 0.7493) (1428.2, 11824.2) (685.3, 1800.5) (497.4, 808.7) (415.6, 508.2) (392.2, 434.3)
(0.140, 0.9999) (1233.9, 8245.2) (641.1, 1533.9) (481.7, 744.4) (410.4, 490.3) (389.7, 426.3)
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Since the out-of-control ARL1,m values are clearly different in the known

and in the estimated parameters case, it is important to determine the number

m of Phase I samples we should consider to get approximately the same out-

of-control ARL1,m values in both cases, using the same optimal control chart

parameters H and K displayed in Table 2. Thus, with

∆ =
|ARL1,m − ARL1,∞|

ARL1,∞

denoting the relative difference between the out-of-control ARL1,m (estimated

parameter case) and ARL1,∞ (known parameter case) values, we computed the

minimum value of m satisfying ∆ ≤ 0.05 or ∆ ≤ 0.01. The obtained minimum

number m of Phase I samples is given in Table 4 for some values of n and δ. From

this table we observe that:

• The value of m satisfying ∆ < 0.05 or ∆ < 0.01 can be very large, for

instance, m > 100 if δ ≤ 0.3. In particular, for δ = 0.1 and n = 9, to

have ∆ < 0.05 we must consider at least 417 samples.

• For the most common subgroup sample size n = 5, the number of sub-

groups must be 569 for very small shifts (say, for δ = 0.1), and con-

sequently n × m will be 2845, much larger than 400, as suggested by

Quesenberry (1993).

• The number of the required samples decreases with the increase shift size

δ. We also observe that the number of subgroups m that are needed

decreases with the sample size n, but the number of observations of the

overall sample needed for the estimation, n × m, also increases.

Table 4: Minimum number m of Phase I samples required to satisfy

∆ = 0.05 (left value) and ∆ = 0.01 (right value) when

the process is out of control.

∆ = (0.05, 0.01)
δ

n = 3 n = 5 n = 7 n = 9

0.1 (711, 3339) (569, 2669) (479, 2241) (417, 1945)
0.2 (319, 1485) (237, 1101) (191, 881) (159, 737)
0.3 (181, 835) (129, 597) (101, 467) (83, 385)
0.5 (81, 371) (55, 257) (43, 197) (35, 159)
0.7 (45, 209) (31, 141) (23, 107) (19, 87)
1.0 (25, 109) (17, 73) (13, 55) (9, 45)
1.5 (11, 51) (7, 35) (5, 27) (5, 21)
2.0 (7, 33) (5, 21) (3, 11) (3, 5)

As a conclusion, we observe that in most of the cases a very large number

m of Phase I samples is needed so that the charts with known and estimated

parameters have the same ARL performance. But this requirement is in general
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very hard to handle in practice for economical and logistic reasons. Therefore, for

fixed values of m and n, the determination of adequate control chart parameters,

taking into consideration the variability introduced by the parameters estimation

is very challenging.

Table 5: Optimal values for H ′
, K ′

, ARL1 and SDRL1

subject to the constraint ARL0 = 370.4.

n = 3
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.886, 0.01) (7.379, 0.01)

(121.6, > 105) (101.3, 32840.0) (88.0, 3910.3) (81.9, 444.6) (84.6, 151.3)

0.2
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.886, 0.01) (7.024, 0.02)

(45.2, 55017.6) (35.7, 4544.5) (32.7, 441.4) (35.6, 55.1) (40.5, 32.8)

0.3
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (5.679, 0.02) (5.197, 0.09)

(19.9, 11098.1) (17.1, 682.8) (18.0, 63.5) (22.4, 17.2) (25.0, 17.5)

0.5
(1.747, 0.01) (2.739, 0.01) (3.976, 0.01) (3.678, 0.16) (3.517, 0.21)
(6.9, 493.1) (7.7, 24.1) (9.7, 6.8) (11.9, 7.6) (12.6, 7.8)

0.7
(1.747, 0.01) (2.739, 0.01) (2.960, 0.15) (2.805, 0.27) (2.671, 0.32)
(4.0, 28.2) (5.2, 3.8) (6.5, 4.0) (7.4, 4.3) (7.7, 4.5)

1.0
(1.747, 0.01) (2.197, 0.16) (2.050, 0.35) (1.997, 0.44) (1.938, 0.48)

(2.7, 2.0) (3.5, 2.0) (4.1, 2.3) (4.4, 2.4) (4.5, 2.4)

1.5
(1.476, 0.18) (1.406, 0.49) (1.331, 0.64) (1.329, 0.70) (1.346, 0.71)

(1.8, 0.9) (2.1, 1.1) (2.3, 1.2) (2.4, 1.2) (2.4, 1.2)

2.0
(1.122, 0.46) (1.040, 0.74) (0.977, 0.88) (0.952, 0.95) (0.947, 0.97)

(1.3, 0.6) (1.5, 0.7) (1.5, 0.7) (1.6, 0.7) (1.6, 0.8)

n = 5
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (4.684, 0.01) (5.827, 0.01)

(104.2, 46570.9) (82.1, 7398.7) (68.8, 1439.2) (64.1, 232.1) (67.4, 92.9)

0.2
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (4.684, 0.01) (4.642, 0.05)
(34.4, 8053.3) (26.1, 916.8) (24.3, 136.6) (27.7, 27.7) (31.4, 23.8)

0.3
(1.536, 0.01) (2.294, 0.01) (3.230, 0.01) (3.791, 0.06) (3.511, 0.11)
(14.4, 1446.5) (12.6, 128.4) (13.8, 20.3) (17.3, 12.0) (18.8, 12.4)

0.5
(1.536, 0.01) (2.294, 0.01) (2.671, 0.08) (2.429, 0.19) (2.378, 0.22)
(5.3, 57.0) (6.1, 6.3) (7.6, 4.8) (8.8, 5.3) (9.1, 5.3)

0.7
(1.536, 0.01) (2.044, 0.07) (1.898, 0.22) (1.811, 0.30) (1.806, 0.32)

(3.3, 4.3) (4.2, 2.5) (4.9, 2.9) (5.4, 3.0) (5.5, 3.0)

1.0
(1.457, 0.05) (1.328, 0.31) (1.314, 0.40) (1.282, 0.46) (1.295, 0.47)

(2.3, 1.2) (2.8, 1.5) (3.0, 1.6) (3.2, 1.6) (3.2, 1.6)

1.5
(0.948, 0.38) (0.858, 0.59) (0.835, 0.67) (0.816, 0.72) (0.805, 0.74)

(1.5, 0.7) (1.6, 0.8) (1.7, 0.8) (1.7, 0.8) (1.7, 0.9)

2.0
(0.680, 0.62) (0.613, 0.80) (0.563, 0.90) (0.553, 0.94) (0.510, 0.99)

(1.1, 0.4) (1.2, 0.4) (1.2, 0.4) (1.2, 0.4) (1.2, 0.4)
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Table 6: (Cont’d) Optimal values for H ′
, K ′

, ARL1 and SDRL1

subject to the constraint ARL0 = 370.4.

n = 7
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (3.987, 0.01) (4.940, 0.01)

(88.9, 19453.2) (67.5, 3754.2) (56.1, 844.7) (53.4, 147.8) (57.2, 65.7)

0.2
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (3.987, 0.01) (3.597, 0.06)
(26.4, 2921.9) (20.2, 389.8) (19.6, 65.3) (23.3, 18.3) (26.0, 18.5)

0.3
(1.355, 0.01) (1.988, 0.01) (2.771, 0.01) (2.862, 0.08) (2.671, 0.12)
(10.8, 464.4) (10.1, 48.2) (11.6, 10.9) (14.2, 9.4) (15.2, 9.7)

0.5
(1.355, 0.01) (1.988, 0.01) (1.917, 0.13) (1.842, 0.20) (1.829, 0.22)
(4.3, 16.0) (5.2, 3.5) (6.3, 3.9) (7.0, 4.1) (7.3, 4.1)

0.7
(1.355, 0.01) (1.488, 0.14) (1.397, 0.25) (1.346, 0.31) (1.326, 0.33)

(2.9, 2.0) (3.6, 2.0) (4.0, 2.2) (4.3, 2.3) (4.4, 2.3)

1.0
(1.038, 0.18) (0.997, 0.34) (0.943, 0.43) (0.933, 0.47) (0.936, 0.48)

(2.0, 1.1) (2.3, 1.2) (2.4, 1.3) (2.5, 1.3) (2.5, 1.3)

1.5
(0.668, 0.46) (0.600, 0.62) (0.573, 0.69) (0.581, 0.71) (0.568, 0.73)

(1.3, 0.5) (1.3, 0.6) (1.4, 0.6) (1.4, 0.6) (1.4, 0.6)

2.0
(0.429, 0.69) (0.386, 0.82) (0.316, 0.93) (0.320, 0.95) (0.318, 0.96)

(1.0, 0.2) (1.1, 0.2) (1.1, 0.2) (1.1, 0.2) (1.1, 0.2)

n = 9
δ

m = 5 m = 10 m = 20 m = 50 m = 100

0.1
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (3.521, 0.01) (4.350, 0.01)

(76.9, 11291.0) (57.1, 2426.2) (47.5, 568.6) (46.4, 103.4) (50.3, 50.5)

0.2
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (3.143, 0.03) (2.889, 0.07)
(21.0, 1482.2) (16.5, 210.2) (16.7, 37.5) (20.3, 15.3) (22.4, 15.5)

0.3
(1.220, 0.01) (1.774, 0.01) (2.459, 0.01) (2.226, 0.10) (2.224, 0.12)
(8.6, 208.6) (8.6, 23.5) (10.1, 7.4) (12.2, 8.0) (12.9, 7.8)

0.5
(1.220, 0.01) (1.685, 0.03) (1.532, 0.15) (1.465, 0.21) (1.438, 0.23)

(3.8, 6.7) (4.6, 2.7) (5.4, 3.2) (5.9, 3.3) (6.1, 3.4)

0.7
(1.220, 0.01) (1.164, 0.18) (1.095, 0.27) (1.056, 0.32) (1.061, 0.33)

(2.6, 1.4) (3.1, 1.7) (3.4, 1.8) (3.6, 1.9) (3.6, 1.9)

1.0
(0.825, 0.23) (0.758, 0.38) (0.724, 0.45) (0.736, 0.47) (0.735, 0.48)

(1.8, 0.9) (1.9, 1.0) (2.0, 1.1) (2.1, 1.1) (2.1, 1.1)

1.5
(0.519, 0.48) (0.446, 0.63) (0.401, 0.71) (0.382, 0.75) (0.379, 0.76)

(1.1, 0.4) (1.2, 0.4) (1.2, 0.5) (1.2, 0.5) (1.2, 0.5)

2.0
(0.315, 0.68) (0.250, 0.82) (0.205, 0.90) (0.206, 0.92) (0.213, 0.92)

(1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1) (1.0, 0.1)

In this paper we computed, for fixed values of m and n, new chart param-

eters denoted as (H ′, K ′
), in order to achieve the desired in-control performance,

i.e. such that, for fixed values of m and n, we have ARL(m, n, H ′, K ′, δ = 0) =

370.4 and, for a fixed value of δ, ARL(m, n, H ′, K ′, δ) is the smallest out-of-control

ARL1,m. These new pairs of constants are given in Tables 5 and 6 for various
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combinations of n, m and δ, and might be used as the chart parameters in the

CUSUM-X̃ charts defined in (3.8) and (3.7), i.e., we might choose h−
g = h+

g = H ′

and k−
g = k+

g = K ′
. In each cell of Tables 5 and 6, the two numbers in the first

row are new chart parameters (H ′, K ′
), and the two numbers in the second row

are the ARL1,m and SDRL1,m values. As we can observe, with these constants

(H ′, K ′
) determined with the unconditional run length distribution, we can guar-

antee the same performance of the corresponding chart implemented with known

process parameters, or even a better performance, except in the cases of m = 5, 10

and δ = 0.1. For the shift size δ that must be quickly detected, the values pre-

sented in Tables 5 and 6 allow the practitioners to easily implement the most

efficient median CUSUM control chart. For instance, if n = 5 and m = 20, the

optimal CUSUM-X̃ chart to detect a shift of size δ = 1 must be designed with

the constants H ′
= 1.314 and K ′

= 0.40. With these chart parameters we get the

values ARL1,m = 3 and SDRL1,m = 1.6.

5. AN ILLUSTRATIVE EXAMPLE

In order to illustrate the use of the CUSUM-X̃ chart when the parameters

are estimated, let us consider the same example as the one in Castagliola and

Figueiredo (2013), i.e. a 125g yogurt cup filling process for which the quality

characteristic Y is the weight of each yogurt cup. The Phase I dataset used in

this example consists of m = 10 subgroups of size n = 5 plotted in the left part

of Figure 1 with “◦”. From this Phase I dataset, using (3.3) and (3.4), we obtain

µ̂′
0 = 125.02 and σ̂′

0 = 0.864. According to the quality practitioner in charge of

this process, a shift of 0.5σ0 (i.e., δ = 0.5) in the process position should be

interpreted as a signal that something is going wrong in the production. For

m = 10, n = 5 and δ = 0.5, Table 5 suggests to use K ′
= 2.294 and H ′

= 0.01.

The Phase II dataset used in this example consists of m = 30 subgroups of

size n = 5 plotted in the right part of Figure 1 with “•”. The first 15 subgroups

are supposed to be in-control while the last 15 subgroups are supposed to have

a smaller yogurt weight, and thus, to be out-of-control. In Figure 2, we plotted

the statistics G−
i and G+

i corresponding to (3.5) and (3.6). This figure shows

that the 7th first subgroups are in-control but, from subgroups #8 to #15, the

process experiences a light out-of-control situation (increase) as the points“•”cor-

responding to the G+
i ’s are above the upper limit K ′

= 2.294. During subgroups

#16 and #17, the process returns to the in-control state but, as expected, sud-

denly experiences a new strong out-of-control situation (decrease) as the points

“◦” corresponding to the G−
i ’s are now below the lower limit −K ′

= −2.294.
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6. CONCLUSIONS

Although the CUSUM-X̃ chart has already been proposed by Yang et al.

(2010) and Nazir et al. (2013a), in both of these papers the authors have only

investigated the performance of this chart through simulations and compared its

performance with other charts in terms of robustness. Moreover, in the implemen-

tation of the chart Yang et al. (2010) assumed the process parameters known, and

Nazir et al. (2013a) also considered them fixed and known, after a prior estima-

tion of such parameters through the use of different location and scale estimators.

But they really did not analyze the effect of the parameters estimation in the per-

formance of the chart in comparison with the performance of the corresponding

chart implemented with true parameters, the main objective of our paper. We

used a Markov chain methodology to compute the run length distribution and

the moments of the CUSUM-X̃ chart in order to study its performance when

the parameters are known and estimated. In this paper we present several tables

that allow us to observe that the chart implemented with estimated parameters

exhibits a completely different performance in comparison to the one of the chart

implemented with known parameters. We also provide modified chart parameters

that allow the practitioners to implement the CUSUM-X̃ chart with estimated

control limits with a given desired in-control performance. More specifically, the

main conclusions are: a) if the shift size δ or the number of samples m used in

the estimation is small, there is a large difference between the ARL1,m and the

SDRL1,m values obtained in the known and estimated parameters cases, b) for

δ small, even if m is relatively large, the ARL1,m values are larger than the ones

obtained in the case of known parameters, c) the ARL1,m and SDRL1,m values

converge to the values of the known parameters case as the number of samples m

increases, d) the number of subgroups m to have a relative difference between the

out-of-control ARL values in the known and estimated parameters cases less than

5% or 1% can be very large, and depends on the value of δ, e) it is possible to

obtain new chart parameters in order to achieve a desired in-control performance.

As a general conclusion, the CUSUM-X̃ chart can be a valuable alternative chart

for practitioners since it is simpler than the CUSUM-X̄ chart. The fact that it

is robust against outliers, contamination or small deviations from normality is

another advantage.
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1. INTRODUCTION

The type of any design is always an option regardless of the type of model

we wish to fit (for example, first order, first order plus some interactions, full

quadratic, cubic, etc.) or the objective specified for the experiment. The design

of experiments for generalized linear models (GLMs) has received considerable

attention in recent years, for example the research by Woods et al. [9]. To some

extent, this has been in response to design issues raised by researchers in exper-

imental sciences, such as new technologies (for example genomics and areas of

modern biology), where the inherent characteristics of data in these fields lead

to the consideration of GLMs for analysis and consequently design. GLMs are

non-linear models and, as such, pose substantial challenges in terms of design,

in particular in the need to have information on the model parameters prior to

designing an experiment to estimate these parameters. Much of the research into

design for GLMs has concentrated on quite small models: one or two variables

and ‘simple’ optimality criteria, such as D-optimality, which is concerned solely

with parameter estimation. However, the paper by Woods et al. [9] investigated

complex models for binary data with several variables over a number of models in

the form of a compound criterion called product design optimality. Historically,

most optimal design criteria have been concerned with parameter estimation,

and more recently some have combined the notions of parameter estimation and

model discrimination (for example, DT-optimality, Atkinson [1]). Examples of

other compound criteria can be found in Waterhouse [8] where criteria are de-

scribed that also yield designs that offer efficient parameter estimation and model

discrimination.

A-optimality criterion corresponds to minimize the variance of the asymp-

totic distribution of the maximum likelihood estimate of that parameter, em-

ployed that criterion of optimality is the one that involves the use of Fisher’s

information matrix. For linear models with one discrete factor and additive gen-

eral regression term the problem of characterizing A-optimal design measures for

inference on treatment effects, the regression parameters and all parameters will

be considered. While, P-optimal design maximizes the average probability of

success of a given design.

The aim of this paper is to derive method for designing experiments from

which minimizing average variance of the parameter estimates can be obtained,

while at the same time maximizing the probability of a particular event that is

of importance to experimenter. This paper is organized as follows: Section 2

is devoted to represent the optimum design background. In Section 3, a simple

review for A — and P — optimum designs is introduced. In Section 4, the AP-

optimum design is proposed to achieve the dual goals of minimizing the average

variance and maximizing the average of the probability of observing an outcome.
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Moreover, the equivalence theorem is derived. Two numerical examples are given

in Section 5 to illustrate the method and the value of the proposed criterion in

meeting the dual aims.

2. OPTIMUM DESIGN PRELIMINARIES

Consider the generalized linear models GLMs

E (Y ) = µ = g−1
(Xβ)

η = g(Xβ)
(2.1)

which is defined by the distribution of the response Y, a matrix of independent

variables (predictors)X , a vector of unknown parameters β and a linear predictor

η and two functions:

1. A link function g (.) that describes how the mean, E (Yi) = µi depends

on the linear predictor g (µi) = Yi.

2. A variance function that describes how the variance, V ar(Yi) depends

on the mean

(2.2) V ar (Yi) = φ(V (µ))

where the dispersion parameter φ is a constant.

In GLMs, the errors or noise ǫi have relaxed assumptions where it may or

may not have normal distribution. GLMs are commonly used to model binary or

count data. Some common link functions are used such that the identity, logit,

log and probit link to induce the traditional linear regression, logistic regression,

Poisson regression models.

An approximate (continuous) design is represented by the probability mea-

sure ξ over the design space δ. If the design has trials at n distinct points in δ,

it can be written as

(2.3) ξ =

{
x1 x2...... xn

w1 w2...... wn

}

A design ξ defines, for i = 1, ..., n, the vector of support-point xi ∈ χ re-

lated to yi, where χ is a compact experimental domain and the experimental

weights wi corresponding to each xi, where
∑n

i=1wi = 1. The design space can

be then expressed as δ = {ξi ∈ Xn × [0, 1]
n

:
∑n

i=1wi = 1}. Such designs are

called approximate or continuous designs.
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3. A- AND P-OPTIMUM DESIGNS

3.1. A-optimum design

A-optimality criterion introduced by Chernoff [2]; who showed that the

employed criterion of optimality is the one that involves the use of Fisher’s

information matrix. For the case where it is desired to estimate one of the

p parameters in the information matrix, this criterion corresponds to minimize

the variance of the asymptotic distribution of the maximum likelihood estimate

of that parameter.

A-optimality minimizes the average variance of the parameter estimates.

Alternatively, it can be expressed as the following form;

(3.1) ΦA (ξ) = min
xi,i=1,...n

tr(XTX)

For a discussion on an A-optimal designs for binary models, see Sitter

and Wu [6], Zhu and Wong [11]. Yang [10] introduced A-optimal designs for

generalized linear models with two parameters which are logistic, probit and

double exponential models.

The equivalence theorem states that, the derivative function

(3.2) fT
(x)M−2

(θ, ξ)f(x) ≤ tr[M−1
(θ, ξ)], x ∈ χ

where M is the information matrix and the equality holds only if ξ = ξ∗A , x ∈ ξ∗A .

A-efficiency of a design ξ is defined as:

(3.3) EffA (ξ) =
tr
[
M−1

(θ, ξ∗A)
]

tr [M−1 (θ, ξ)]

where ξ∗A is A-optimal.

3.2. P-optimum designs

McGree and Eccleston [5] have offered a P-optimality criterion, which is

defined as a criterion that maximizes a function of the probability of observing

a particular outcome. One of the forms of P-optimality which defined is con-

cerned with the maximization of a weighted sum of the probabilities of success.
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The form of this criterion is

(3.4) ΦP (ξ) =

n∑

i=1

πi (θ, ξi)wi

where, πi (θ, ξi) is the i-th probability of success given by ξi and wi is the exper-

imental effort relating to the i-th support point. In this criterion, design weights

have been included and will play a role in maximizing the probabilities.

Let ξ∗P be the design maximizing (3.4). Under some regularity conditions,

McGree an Eccleston [5] proved an equivalence theorem for P-optimum designs,

in which the derivative function ψP (x, ξ∗P ) ≤ 0, x∈χ, where

(3.5) ψPA
(x, ξ∗P ) =

ΦP (x) − ΦP (ξ∗P )

ΦP

(
ξ∗P
)

is the directional derivative of Φp (ξ). The P -efficiency of a design ξ relative to

the optimum design ξ∗P is

(3.6) EffPA
(ξ) =

∑n
i=1 πi (θ, ξi)wi

∑n
i=1 πi

(
θ, ξ∗PA

)
wi

.

4. AP-OPTIMUM DESIGN

There is a situation when an experimenter may be interested to achieve mul-

tiple objectives. For this aim, we will construct a design that combine

A-optimality with P-optimality. The new criterion will be called AP-optimality.

This criterion offers a method of achieving minimizing the average variance and

a high probability of a desired outcome.

The AP-optimality criterion is given by the following weighted geometric

mean of efficiencies:

(4.1) {EffA(ξ)}α{EffP (ξ)}1−α
=

(
tr[M−1

(θ, ξ∗A)]

tr[M−1(θ, ξ)]

)α( ∑n
i=1 πi (θ, ξi)wi∑n
i=1 πi

(
θ, ξ∗P

)
wi

)1−α

where the coefficients 0 ≤ α ≤ 1. When α = 0, we obtain P -optimality and when

α = 1, we obtain A-optimality. To clarify the structure of the design criterion,

take log in (4.1) yields

α log(tr
[
M−1

(θ, ξ∗A)
]
) − α log(tr

[
M−1

(θ, ξ)
]
) +

+ (1 − α) log

n∑

i=1

πi (θ, ξi)wi − (1 − α) log

n∑

i=1

πi (θ, ξ∗P )wi.
(4.2)
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The terms involving ξ∗A and ξ∗P are constants when a maximum is found over ξ.

Many bibliographical references presented the concept of this maximization

method such as Dette [4]; Atkinson [1]; Tommasi [7]; and McGree and Eccle-

ston [5]. So that the criterion to be maximized is

(4.3) ΦAP (ξ) = −α log(tr
[
M−1

(θ, ξ)
]
) + (1 − α) log

n∑

i=1

πi (θ, ξi)wi.

The negative sign for the first term on the right hand side of (4.3) arises

because the average variance is minimized. Designs maximizing (4.3) are called

AP-optimum and denoted ξ∗AP .

The equivalence theorem is stated as follows:

Theorem 4.1. For AP -optimal design, ξ∗AP , the following three state-

ments are equivalent.

1. A necessary and sufficient condition for a design ξ∗AP to be AP -optimum

is fulfillment of the inequality ψAP (x, ξ∗AP ) ≤ 1, x ∈ χ , where the

derivative function of (4.3) is given by

(4.4) ψAP (x, ξ∗AP ) = α

(
fT

(x)M−2
(θ, ξ∗AP )f(x)

ΦA(ξ∗AP )

)
+ (1−α)

(
ΦP (x) − ΦP (ξ∗AP )

ΦP (ξ∗AP )

)
.

2. The upper bound of ψAP (x, ξ∗AP ) is achieved at the points of the opti-

mum design.

3. For any non optimum design ξ, that is a design for which ΦAP (ξ) <

ΦAP (ξ∗AP ), supx∈χ ψAP (x, ξ∗AP ) > 1 .

Proof: Since 0 ≤ α ≤ 1, ψAP is a convex combination of logarithm of two

design criteria. Therefore, the AP-criterion satisfies the conditions of convex

optimum design theory and an equivalence theorem applies. Because of the way

the terms in (4.4) have been scaled, the upper bound of ψAP over x ∈ χ is one,

achieved at the points of the optimum design. Furthermore, ψAP is the linear

combination of the directional derivatives given by A-optimality and P-optimality.

Thus, the theorem has been proved.
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5. APPLICATIONS TO GENERALIZED LINEAR MODELS

In this Section, the AP-optimality criterion is applied to two types of gen-

eralized linear models, Logit and probit models, for binary data. The data were

based on the work given by in Corana et al. [3]. The A-, P-, and the proposed

compound AP-efficiencies are calculated and the optimal designs are obtained to

illustrate the main objective of the compound criterion that allow both minimiz-

ing the average variance of the parameter estimates plus increasing the probability

of the desired outcome.

Example 5.1. Logit Model

The considering logit model has two main factor effects besides the in-

teraction with initial parameter estimates θ = [1,−2, 1,−1]
T
with xj ∈ [−1, 1] as

follows:

(5.1) Log

(
π

1 − π

)
= 1 − 2x1 + x2 − x1x2.

AP-optimal designs and their A- and P-efficiencies for α= 0, 0.25, 0.5, 0.75, 1

are obtained and presented in Table 1.

Table 1: AP-optimum design and their A- and P-efficiencies

for the Logit model at different values of α.

α x1 x2 wi πi Aeff Peff

0 −1.000 1.000 1.000 0.9933 — 1

0.25

1.0000 −1.000 0.0835 0.2689

0.822183 0.80600.8020 1.000 0.0999 0.3999
−1.000 −1.000 0.1983 0.7311
−0.3980 1.000 0.6182 0.9596

0.5

1.000 −1.000 0.1570 0.2689

1 0.66441.000 1.000 0.1600 0.2889
−1.000 −1.000 0.2802 0.7311
−0.1059 1.000 0.4028 0.9103

0.75

1.000 1.000 0.2121 0.2689

0.741011 0.58261.000 −1.000 0.2121 0.2689
−1.000 −1.000 0.2740 0.7311

0.0148 1.000 0.3017 0.8761

1

1.000 −1.000 0.2500 0.2689

0.864115 0.53521.000 1.000 0.2500 0.2689
−1.000 −1.000 0.2500 0.7311

0.0680 1.000 0.2500 0.8577
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Table 1 shows the designs that maximize the AP-criterion. It can be noticed

that there is little changes in the design points with high variation in design

weights. That is, the Peff ’s are increased through the given designs as well as the

probability of success is increased. Figure 1 illustrates the A- and P-efficiencies for

α = 0, 0.25, 0.5, 0.75 and 1. The dot-dashed line represents the A-efficiency of

the designs, and the solid line shows their P-efficiencies. The following A-optimal

design has a P-efficiency of 0.6644.

ξ∗A =





1.0000

1.0000

−1.000

−0.1059

−1.000

1.000

−1.000

1.000

0.1570

0.1600

0.2802

0.4028




.

Figure 1: A- and P-efficiencies of AP-optimal designs

for different values of α.

By using the AP-criterion and choosing α = 0.25, we are able to increase the

P-efficiency to 0.806, while achieving a A-efficiency of 0.822183. The AP-optimal

design is

ξ∗AP =





1.000

0.802

−1.000

−0.398

−1.000

1.000

−1.000

1.000

0.0835

0.0999

0.1983

0.6182




.

Example 5.2. Probit Model

In the following Example, the AP-optimality criterion is applied to the

probit model. The response variable is modelled via three main factor effects

with initial parameters β = [1,−0.5, 1,−1], with xj ∈ [−1, 1]:

(5.2) Φ
−1

(π) = 1 − 0.5 x1 + x2 − x3.

Table 2 include the main results of the designs and their A- and P-efficiencies

for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Figure 2 illustrates the A- and P-efficiencies
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for α = 0, 0.2, 0.35, 0.5, 0.75, 1. Using the compound criteria AP-criterion, at

α = 0.5, we can see that the A-efficiency and P-efficiencies have very close high

efficiencies, 0.982127 , 0.983084, respectively.

Table 2: AP-optimum design and their A- and P-efficiencies

for the Probit model at different values of α.

α x1 x2 x3 wi πi Aeff Peff

0

−1.0000 −1.0000 1.0000 0.0708 0.3085

1 0.98427

−0.6296 1.0000 −1.0000 0.1105 0.9988
−0.5423 1.0000 1.0000 0.1600 0.8980
−0.5423 −1.0000 −1.0000 0.1600 0.8980
−0.0186 −1.0000 1.0000 0.0658 0.1611

0.0186 1.0000 1.0000 0.0658 0.8389
0.0186 −1.0000 −1.0000 0.0658 0.8389
0.5423 −1.0000 1.0000 0.1600 0.1020
1.0000 −1.0000 −1.0000 0.0708 0.6915
1.0000 1.0000 1.0000 0.0708 0.6915

0.2

−1.0000 −1.0000 1.0000 0.0608 0.3085

0.964075 1

−0.5368 −1.0000 −1.0000 0.2315 0.8980
−0.5368 1.0000 1.0000 0.2315 0.8980
−0.5244 1.0000 −1.0000 0.1232 0.9987

0.5368 −1.0000 1.0000 0.2315 0.1020
1.0000 −1.0000 −1.0000 0.0608 0.6915
1.0000 1.0000 1.0000 0.0608 0.6915

0.35

−1.0000 −1.0000 1.0000 0.0630 0.3085

0.979698 0.996276

0.5027 1.0000 −1.0000 0.1213 0.9987
−0.4894 −1.0000 −1.0000 0.2299 0.8925
−0.4894 1.0000 1.0000 0.2299 0.8925

0.4894 −1.0000 1.0000 0.2299 0.1075
1.0000 −1.0000 −1.0000 0.0630 0.6915
1.0000 1.0000 1.0000 0.0630 0.6915

0.5

−1.0000 −1.0000 1.0000 0.0618 0.3085

0.982127 0.983084

−0.5140 1.0000 −1.0000 0.1085 0.9987
−0.4709 1.0000 1.0000 0.2144 0.8925
−0.4395 −1.0000 −1.0000 0.2241 0.8888
−0.0373 −1.0000 1.0000 0.0245 0.1635

0.0372 1.0000 1.0000 0.0245 0.8365
0.4709 −1.0000 1.0000 0.2144 0.1075
1.0000 −1.0000 −1.0000 0.0662 0.6915
1.0000 1.0000 1.0000 0.0618 0.6915

0.75

−1.0000 −1.0000 1.0000 0.0504 0.3085

0.778262 0.988816

−1.0000 −1.0000 −1.0000 0.0143 0.9332
−1.0000 1.0000 1.0000 0.0143 0.9332
−1.0000 1.0000 −1.0000 0.1306 0.0089
−0.0101 −1.0000 −1.0000 0.2251 0.8413
−0.0101 1.0000 1.0000 0.2251 0.8413

0.0101 −1.0000 1.0000 0.2251 0.1587
1.0000 −1.0000 1.0000 0.0143 0.0668
1.0000 −1.0000 −1.0000 0.0504 0.6915
1.0000 1.0000 1.0000 0.0504 0.6915

(continues)
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(continued)

α x1 x2 x3 wi πi Aeff Peff

0.9

−1.0000 −1.0000 1.0000 0.0533 0.3085

0.820936 0.983858

−0.9942 1.0000 −1.0000 0.1197 0.9987
−0.8203 −1.0000 −1.0000 0.0212 0.9207
−0.8203 1.0000 1.0000 0.0212 0.9207
−0.0348 −1.0000 −1.0000 0.2189 0.8461
−0.0348 1.0000 1.0000 0.2189 0.8461

0.0348 −1.0000 1.0000 0.2189 0.1539
0.8203 −1.0000 1.0000 0.0212 0.0793
1.0000 1.0000 1.0000 0.0533 0.6915
1.0000 −1.0000 −1.0000 0.0533 0.6915

1

−1.0000 −1.0000 1.0000 0.0550 0.3085

0.899469 0.970774

−0.9344 1.0000 −1.0000 0.0924 0.9989
−0.6464 −1.0000 −1.0000 0.0515 0.9066
−0.6464 1.0000 1.0000 0.0515 0.9066
−0.0612 −1.0000 −1.0000 0.1960 0.8485
−0.0612 1.0000 1.0000 0.1960 0.8485

0.0612 −1.0000 1.0000 0.1960 0.1515
0.6464 −1.0000 1.0000 0.0515 0.0934
1.0000 −1.0000 −1.0000 0.0550 0.6915
1.0000 1.0000 1.0000 0.0550 0.6915

Figure 2: A- and P-efficiencies of AP-optimal designs for different values of α.

Hence, the AP-optimal design which satisfy the dual problem is obtained as:

ξ∗AP =





−1.0000

−05140

−0.4709

−0.4395

−0.0373

0.0372

0.4709

1.0000

1.0000

−1.0000

1.0000

1.0000

−1.0000

−1.0000

1.0000

−1.0000

−1.0000

1.0000

1.0000

−1.0000

1.0000

−1.0000

1.0000

1.0000

1.0000

1.0000

1.0000





.
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6. CONCLUSION

The criterion AP-optimum design introduced here provides a new com-

pound criterion that yield minimum of the average variance of the parameter

estimates plus a high probability of observing a particular outcome. The equiv-

alence theorem is stated and proved for AP-optimum design. Two illustrated

examples are presented for logit and probit models. The results indicate the

potentiality of using the proposed AP-optimality criterion.
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1. INTRODUCTION

Factorial designs constitute a powerful tool especially in screening experi-

ments where the goal is to identify the factors with a significant impact on the

response of interest. Although two-level factorial designs are commonly used as

experimental plans, the number of runs grows exponentially as the number of

factors increases; thus, in case when the replication of the experiment is pro-

hibitive due to economical or technical issues, unreplicated designs constitute an

appropriate choice. Such designs are saturated; means that the number of exam-

ined factors d equals to n − 1, where n is the number of runs. As a result, the

experimenter can estimate all the d main and interaction effects, but there are

no degrees of freedom to estimate the error; therefore, the conventional analysis

of variance (ANOVA) techniques cannot be applied.

Many methods, either theoretical or graphical ones, have been proposed

to overcome the aforementioned problem. The standard method for identifying

active effects in unreplicated designs is the probability plot of the effects, proposed

by Daniel [7]. This approach consists of plotting the factor estimates on a normal

or half-normal probability plot, where the inactive effects fall along a straight line

while the active ones tend to fall off the line. The subjective nature of that method

motivated many authors to provide more objective procedures. For a detailed

review article, we refer the interested reader to Hamada and Balakrishnan [10].

Some important works include: Box and Meyer [5], Lenth [11], Dong [8], Chen

and Kunert [6], Aboukalam [1], Miller [14], Voss and Wang [22], Angelopoulos

and Koukouvinos [2], and Angelopoulos et al. [3,4].

Although many methods have been proposed for analyzing unreplicated

designs for a normal response, it is evident the lack of research papers for non-

normally distributed responses. This fact prompted us to develop a methodology

for screening out the important effects assuming that the response of interest is

a binary one; therefore, we developed a generalized linear model, say a logistic

model. Our approach for analyzing unreplicated designs constitutes a statistical

method inspired by some information theoretical measures, the main of which was

the symmetrical uncertainty (SU). To the best of our knowledge, this is the first

time such an algorithm is modified and appropriately used for variable selection

in unreplicated designs. The merits of our study is encouraging enough.

The rest of the paper is organized as follows. In Section 2, we briefly discuss

the basic concepts of the information theoretical measures, the formulation of the

problem as well as our new SU algorithm. In Section 3, we carry out an empirical

study comparing our method with two well-known feature selection algorithms,

the CMIM and the mRMR. Finally, in the last Section 4, we summarize the

merits of our study providing some concluding remarks.
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2. A METHOD FOR SEARCHING ACTIVE EFFECTS IN UN-

REPLICATED DESIGNS WITH BINARY RESPONSE

Generalized linear models (Nelder and Wedderburn [17], McCullagh and

Nelder [13] and Myers et al. [16]) were developed to allow the fit of regression

models for response data that follow a distribution belonging to the exponential

family. This family includes not only the exponential but also the normal, bi-

nomial, Poisson, geometric, negative binomial, gamma and the inverse normal

distributions. All these models have a common property: the mean (or expected)

response at each data point and the variance of the response are related.

Consider a two-level full factorial unreplicated design where one wants to

estimate the main and interaction effects in d factors with n runs. Let X be the

corresponding n × d design matrix where at the ith data point, i = 1, ..., n the

response is a Bernoulli random variable yi, that takes only two possible values, 0

and 1, representing “failure” or “success”, respectively. It is well known that µi =

E(yi) = Pi = P (xi), where Pi is the probability of success in a Bernoulli process,

xi is a d-dimensional vector of the predictor variables and V ar(yi) = Pi(1 − Pi)

is the variance of the response. It is obvious that the variance is a function of the

mean. The probability of success, P (xi), in case of the logistic regression model

is given as follows

(2.1) P (xi) =
1

1 + e−x
T
i β

,

where the term xT
i β is said to be the linear predictor. For more details on logistic

regression model, we refer the interested reader to Montgomery et al. (2006).

In accordance with this scenario, we perform our simulation study by generating

logistic models that has the form

(2.2) yi = P (xi) + ε,

where ε has a distribution with zero mean and variance P (xi)[1 − P (xi)]. More

precisely, ε takes two possible values: ε = 1 − P (xi) with probability P (xi) if

y = 1, and ε = −P (xi) with probability 1 − P (xi) if y = 0. Consequently, the

conditional distribution of the outcome variable has a Bernoulli distribution with

success probability P (xi).



Analysis of Unreplicated Designs with Binary Response 387

2.1. Information measures

Information theory provides useful tools to quantify the uncertainty of ran-

dom variables. Our method is inspired from the information theory field with

the aim of identifying those effects that carry as much information as possible.

This section provides some information measures which constitutes the theoreti-

cal basis of our methodology.

Let U and V be two discrete random variables. One of the most fundamen-

tal concept in information theory is that of entropy measure which was introduced

by Shannon [21] and it is defined as

(2.3) H(U) = −
∑

u∈U

p(u) log2(p(u)).

The entropy quantifies the uncertainty of U , where p(u) is the prior probability

for all values of U . It is a measure of the amount of information required on

average to describe the random variable. The information entropy of a Bernoulli

trial used in our study is defined as

(2.4) H(Y ) = −p(y)log2p(y) − (1 − p(y))log2(1 − p(y)),

where p(y) is the prior probability for all values of Y .

In case of two variables we could define the mutual information (MI) which

is a quantity that measures the mutual dependence of these variables. It is also

called information gain (Quinlan [18]) and it is defined as

I(U |V ) = H(X) − H(X|Y ) = H(Y ) − H(Y |X)

= H(X) + H(Y ) − H(X, Y ).
(2.5)

Note that the MI of a random variable with itself, is its entropy. MI can

be used for feature selection with the aim to select a small subset of features that

carries as much information as possible (Fleuret [9], Peng et al. [19]). Information

gain is a symmetrical measure for two random variables. Symmetry is an appeal-

ing property for a measure of correlations between factors, but information gain

is biased in favor of factors with more values. Symmetrical uncertainty (Press et

al. [20]) counterbalances the bias of information gain towards factors with more

values, and normalizes its value to the range [0, 1]. The definition of Symmetrical

Uncertainty is given as

(2.6) SU(U, V ) = 2 ×
[

I(U |V )

H(U) + H(V )

]
.
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2.2. Symmetrical uncertainty algorithm

The proposed method is a modification of a feature selection algorithm,

known as Fast Correlation Based Filter (FCBF, Yu and Liu [23]). More precisely,

it actually performs a typical variable selection using the SU coefficient so as to

determine the significant effects. The algorithm can be described as follows:

Algorithm

a) Given a n× d unreplicated design matrix X = [x1,x2, ...,xd], where xl,

l = 1, 2, ..., d, is the lth column of the matrix, as well as a n×1 Bernoulli

distributed vector y, which is the response vector, compute the entropy

and the conditional entropy with respect to the response variable.

b) Compute the vector entropy values and the conditional entropy values

for each variable as: H(X) = (H(x1), H(x2), ..., H(xd)) and H(X|Y) =

(H(x1|y), H(x2|y), ..., H(xd|y)), where H(xj) is the corresponding value

of the entropy measure and H(xj |y) is the corresponding value of the

conditional entropy for the j-th, j = 1, ..., d variable, respectively.

c) Compute the vector of information gain values as: I(X|Y ) = (I(x1|y),

I(x2|y), ..., I(xd|y)), where I(xj |y) is the information gain value for

each variable with respect to the response variable.

d) Compute the symmetrical uncertainty measure, SU =(su1, su2, ..., sud),

where

suj = 2 ×
[

I(xj |y)

H(xj) + H(y)

]
,

for j = 1, ..., d, represents the value of SU for the j-th variable with

respect to the response variable.

e) The last step is to identify and maintain the significant effects by re-

taining only those with scores greater than the predefined threshold

value of the SU vector values.

2.3. Performance Criteria

The performance of the proposed methodology is evaluated using the two

most known criteria, the Type I and Type II error rates. In screening designs,

there are two, the probability of declaring an inactive factor to be active (Type I

error), and the probability of declaring an active factor to be inactive (Type II

error). Type II errors are troublesome, as addressed in Lin [12], as well as Type I

errors, since they can result in unnecessary cost in follow-up experiments. Type I

errors are very likely in situations of effect sparsity. Undoubtedly, Type II error

rates are of highly importance and we have considered that importance during

the creation and implementation of our algorithm.
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3. EXPERIMENTAL RESULTS

This section presents a simulation study examining the performance of our

algorithm. To assess the performance of the proposed method, we applied simu-

lations for a wide range of underlying models. Our information-theoretic method

is compared with two feature selection algorithms which are widely used in many

fields of science: the Conditional Mutual Information Maximization (CMIM) al-

gorithm proposed by Fleuret [9] and the minimal-redundancy–maximal-relevance

feature selection (mRMR) algorithm proposed by Peng et al. [19]. These algo-

rithms were selected to be compared with SU-algorithm since they were made

based on information measures. More precisely, CMIM constitutes a feature se-

lection technique based on conditional mutual information and it iteratively picks

features which maximize their mutual information with the class to predict, con-

ditional to any feature has already picked. MRMR algorithm performs feature

selection by maximizing the mutual information between the selected features and

the desired output (relevance), as well as by minimizing the mutual information

between the selected features (redundancy).

3.1. Simulation scheme

Two unreplicated factorial designs served as the design matrices in our sim-

ulations experiments: a 2
4

and a 2
5

full factorial design. We used these designs

since they are commonly used in a wide range of problems; thus, our results can be

comparable to other existing methods and problems. For the examined designs,

the true active variables were selected using two different scenarios. For each de-

sign and each number of the active factors, we randomly generated 1000 Bernoulli

distributed response vectors y ∼ Bernoulli(P (XT β)), where P (u) =
1

1+e−u . All

simulations were conducted using MATLAB codes.

Scenario A: We developed logistic models with coefficients taking prede-

fined values. The coefficients of inactive effects are set equal to zero. However,

in order to examine the sensitivity of the results in terms of the selection and the

number of active factors, we changed the order of columns of the active factors,

using different values of β as well as different number of active factors for each

unreplicated design. As a result, we considered several models that were different

in this regard. We considered the cases for p = 1, 2, 3, 4, 5, 6, 7, 8 active effects

involved in a 2
4

factorial design and for p = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12 active

effects involved in a 2
5

factorial design.

Scenario B: We developed logistic models with coefficients taking ran-

domly selected values from the range −5 to 5. When a generated coefficient was

“almost zero”, it was replaced by 50% of the maximum coefficient. Concerning
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the true active variables, they were also selected randomly, according to the uni-

form distribution, using the set of {1, ..., d} potentially active factors and with

respect to the number of active factors of the design matrix. The coefficients of

the non-active variables in the true model, were set equal to zero. The number of

true active variables was set at most d/2, based on the sparsity of effects principle

(Box and Meyer [5]). This principle states that, in contrast with the initial large

number of potentially active factors, only few of them are dominant, meaning

that their multitude hardly exceeds 1/2 of the total number of factors.

3.2. Simulation results

The simulation results listed in the following Tables and Figures, contain

the application of the SU method along with that of CMIM and mRMR. Before

performing the simulation experiments, we should set the threshold value which

determines whether a factor is significant or not. Several different threshold values

(0.001, 0.01, 0.05, 0.1, 0.15, 0.2, median (SU)) were examined in order to find the

optimal one for the proposed method. We finally selected the median(SU) as a

threshold value, since it acquires the best results. Not to mention the fact that

median(SU) is based on the estimated values of the SU vector and it seems to

be a reasonable choice. The following Tables summarize the results concerning

scenario A of simulation study. Specifically, in Tables 1 and 3, we present the

examined models for designs with four and five factors, respectively. The first

column represents the number corresponding to each model with predefined values

for the coefficients depicted in the second column.

Table 1: Models considered in the simulation study

for a 2
4

unreplicated design (Scenario A).

Model Predefined values of coefficients

1 [0,0,0,0,3,0,0,0,0,0,0,0,0,0,0]T

2 [0,0,0,0,0,0,0,0,0,0,0,2,0,0,3]T

3 [0,0,-7,0,0,0,0,-8,0,0,0,0,0,0,-6]T

4 [0,0,-9,0,4,0,0,0,0,-2,0,0,0,0,10]T

5 [6,0,0,0,0,7,0,0,-5,-5,0,-7,0,0,0]T

6 [0,7,0,-2,0,5,2,0,4,0,0,0,-8,0,0]T

7 [0,0,-9,2,0,0,0,4,5,8,0,0,-5,-7,0]T

8 [5,0,-6,8,0,-5,6,0,0,7,0,0,-7,0,1]T

The obtained results are summarized in Tables 2 and 4 for four and five

factors, respectively. More precisely, the first column in both Tables contains
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the number that corresponds to each model. The remaining columns present the

results for Type I and Type II error rates correspond to each method separately.

Table 2: 2
4

unreplicated design: Performance of the proposed method

for models 1–8, using 1000 simulations (Scenario A).

Type I Error Type II Error
Model

SU CMIM mRMR SU CMIM mRMR

1 0.00 0.00 0.03 0.00 0.00 0.00
2 0.15 0.04 0.08 0.17 0.31 0.45
3 0.08 0.08 0.11 0.00 0.33 0.33
4 0.09 0.10 0.11 0.24 0.27 0.28
5 0.09 0.10 0.13 0.08 0.23 0.23
6 0.00 0.11 0.22 0.33 0.33 0.33
7 0.12 0.34 0.35 0.28 0.39 0.40
8 0.00 0.13 0.18 0.12 0.12 0.16

Average 0.07 0.11 0.15 0.15 0.25 0.27

Table 2 clearly shows that SU algorithm outperforms all the others in terms of

both Type I and Type II error rates. Especially, the average values of Type II

error is comparatively smaller; with SU equals to 0.15 compared to 0.25 and 0.27

of CMIM and mRMR, respectively. This fact is extremely important in factorial

designs since low Type II means low probability of declaring an active factor to

be inactive.

Table 3: Models considered in the simulation study

for a 2
5

unreplicated design (Scenario A).

Model Predefined values of coefficients

1 [0,5,0,0,0,0,0,0,0,0,0,0,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,0,0,0,6,0]T

2 [20,0,-17,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]T

3 [7,0,5,0,0,3,0,0,0,0,0,0,0,-5,0,0,0,0,0,0,0,0,0,0,0,0,0,-7,0,0,0]T

4 [0,0,0,17,0,0,0,0,0,0,0,8,0,0,0,-7,0,12,0,0,0,0,0
”
0,3,0,0,0,0,-8,0]T

5 [0,0,-9,-5,0,-9,0,0,0,0,0,0,0,0,0,-2,0,0,5,0,0,0,0
”
4,0,0,0,0,0,0,8]T

6 [0,0,0,0,0,0,5,0,0,7,0,0,0,0,7,0,0,0,5,0,0,0,0,0,0,0,5,9,9,0,0]T

7 [0,2,4,0,0,0,0,0,0,0,0,0,2,0,3,0,0,-2,0,2,0,0,0
”
0,0,0,3,2,0,0,0]T

8 [5,0,4,5,0,0,0,0,0,0,0,0,0,0,0,0,9,5,0,4,5,0,0,0,0,0,0,0,0,9,6]T

9 [0,0,2,-4,-3,0,0,0,0,0,-4,3,0,0,0,0,-4,0,0,0,0,0,0,0,0,0,4,3,0,2,-1]T

10 [0,-5,0,0,0,0,-9,0,-7,0,0,0,-4,0,0,0,-5,-7,0,0,0,-2,-9,0,0,0,0,-3,-8,0,-5]T

11 [0,7,9,9,0,0,0,0,0,17,0,0,0,10,7,19,0,0,0,0,10,0,0,14,13,0,0,0,3,-10,0]T

12 [0,3,0,-2,0,0,0,0,1,0,0,-4,-3,2,0,0,0,-5,1,4,0,-3,0,2,0,3,0,2,2,4,0]T
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Table 4 shows that SU algorithm achieves the lowest error rates outper-

forming the other two methods. More precisely, SU gathers extremely low average

value of Type II while keeping low values of Type I error. Figure 1 illustrates the

performance of the proposed methods considering Type II errors for scenario A

and scenario B at the left and right panel, respectively, considering the design

with the four factors. As depicted in this Figure, SU reveals extremely better

results compared to CMIM and mRMR in all the considered cases, establishing

its effectiveness.

Table 4: 2
5

unreplicated design: Performance of the proposed method

for models 1–12 (Scenario A).

Type I Error Type II Error
Model

SU CMIM mRMR SU CMIM mRMR

1 0.04 0.04 0.03 0.00 0.33 0.26
2 0.04 0.04 0.04 0.00 0.33 0.33
3 0.19 0.08 0.04 0.00 0.39 0.21
4 0.15 0.06 0.10 0.00 0.26 0.42
5 0.17 0.08 0.08 0.14 0.29 0.28
6 0.08 0.07 0.09 0.14 0.24 0.32
7 0.13 0.09 0.10 0.00 0.26 0.30
8 0.22 0.18 0.15 0.00 0.43 0.36
9 0.14 0.08 0.13 0.09 0.17 0.27

10 0.18 0.20 0.21 0.27 0.36 0.39
11 0.21 0.19 0.22 0.08 0.29 0.34
12 0.04 0.24 0.17 0.13 0.23 0.18

Average 0.13 0.11 0.12 0.07 0.30 0.31

Figure 1: Comparisons of Type II error rates for Scenario A(left panel)

and Scenario B (right panel) in case of four factor model.

SU algorithm vs CMIM and mRMR (Scenario A).
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Tables 5 and 6 are referred to scenario B. According to the simulation

scheme, first column shows the number of true active effects in the simulated

models which were selected randomly, and the next columns are referred to the

average values of the Type I and Type II error rates for the examined approaches.

Table 5: 2
4

unreplicated design: Performance of the examined methods

for random model coefficients (Scenario B).

Type I Error Type II Error
Active effects

SU CMIM mRMR SU CMIM mRMR

1 0.00 0.01 0.01 0.00 0.09 0.08
2 0.02 0.06 0.15 0.36 0.39 0.40
3 0.12 0.08 0.10 0.10 0.37 0.36
4 0.13 0.12 0.12 0.22 0.32 0.34
5 0.10 0.17 0.17 0.31 0.34 0.35
6 0.09 0.21 0.23 0.30 0.34 0.36
7 0.08 0.27 0.28 0.31 0.32 0.32

Average 0.08 0.13 0.15 0.23 0.31 0.32

A four factor unreplicated design is considered and seven different active factors

from 1 to 7 were taken. Observing Table 5 we could confirm that the SU algorithm

achieves an excellent performance since it has the lowest percentages of both Type I

and Type II errors, say 0.08 and 0.23, while CMIM and mRMR achieve almost simi-

lar results with average values equal to 0.13 and 0.32 for Type I and Type II errors.

Table 6: 2
5

unreplicated design: Performance of the examined methods

for random model coefficients (Scenario B).

Type I Error Type II Error
Active effects

SU CMIM mRMR SU CMIM mRMR

1 0.00 0.02 0.01 0.00 0.02 0.04
2 0.01 0.03 0.03 0.30 0.38 0.39
3 0.05 0.04 0.04 0.10 0.34 0.30
4 0.16 0.05 0.05 0.07 0.30 0.29
5 0.17 0.09 0.06 0.09 0.32 0.32
6 0.18 0.07 0.07 0.12 0.31 0.31
7 0.17 0.11 0.10 0.18 0.31 0.32
8 0.17 0.12 0.11 0.21 0.32 0.32
9 0.16 0.15 0.14 0.25 0.32 0.32

10 0.15 0.16 0.16 0.28 0.33 0.33
11 0.15 0.20 0.19 0.31 0.33 0.33
12 0.14 0.21 0.21 0.37 0.33 0.34
13 0.14 0.23 0.25 0.38 0.32 0.33
14 0.12 0.26 0.26 0.41 0.32 0.32
15 0.13 0.29 0.29 0.44 0.31 0.31

Average 0.13 0.14 0.13 0.23 0.30 0.30
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Lastly, Table 6 aggregates the results for a five-factor unreplicated design con-

sidering different number of active factors, varying from 1 to 15. The average

values of Type I error, show that SU overall outperforms the other algorithms.

It is obvious that in terms of Type II error rates, SU revealed much better per-

formance. Figure 2 illustrates a comparison of Type II error rates for scenario

A (left panel) and scenario B (right panel), considering the design with the five

factors. The horizontal axes show the active factors that we examined each time

while the vertical axes the percentage of the Type II error. It should be noted

that in cases of 12 active factors and above, the performance is relatively smaller.

This fact justified by the assumption of effect sparsity which holds in the present

experiment.

Figure 2: Comparisons of Type II error rates for Scenario A(left panel)

and Scenario B (right panel) in case of five factor model.

SU algorithm vs CMIM and mRMR.

3.3. Real experiment

In this subsection, we examine how the proposed screening methodology

performs in the presence of real data. More precisely, we examined a real medical

dataset that was collected in an annual registry conducted during the period

01/01/2005 – 31/12/2005 by the Hellenic Trauma and Emergency Surgery Society

and which involves 30 General Hospitals in Greece. Each week, there was selected

two data sets, each forms a factorial design with four and five factors, respectively,

according to medical advice. There was the necessity of finding significant factors

and their interactions without using an extremely large number of patients. For

each patient a corresponding response variable, y, was reported which takes only

two possible outcomes, denoted as 0 for survival and 1 for death. Taking all the

interactions among factors a factorial design without replicates was formed.
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This experiment helped us to confirm the effectiveness of our method to

identify the significant factors in real life problems. This case study is of particular

interest since one can identify the most significant variables and their interactions

with respect to a certain effect (survival or death). The main purpose of the

present real case study is to validate the practical use of our approach and to

give some insights into how the proposed screening procedure contributes in real

life scenarios. First of all, we present the analysis of the real data in the presence

of four factors. Table 7 gives a description of the variables used in our study.

Table 7: Description of variables for a 2
4

experiment.

Variable Description

x55 immobility of limbs (0 = no, 1 = yes)
x56 fluids (0 = no, 1 = yes)
x64 Radiograph E.R. (0 = no, 1 = yes)
x72 surgical intervention (0 = no, 1 = yes)

Table 8 presents the merits of this experiment. We denote variable x55 as factor A,

variable x56 as factor B, variable x64 as factor C and x72 as the D factor. Accord-

ing to this notation we present the second order interactions of variables x55 and

x56 as AB, of variables x55 and x64 as AC and so on. In this way we acquired

the third and fourth order interactions of factors presented in Table 8. As we

can conclude, all the applied methods recognize exactly the same significant vari-

ables something that confirms the efficiency of our algorithm to correctly identify

significant factors.

Table 8: Significant variables for the real medical dataset using a 2
4

experiment.

Method A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD

SU • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

CMIM • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

mRMR • • ◦ ◦ • ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦ •

The second stage of this real experiment regards to the full factorial

unreplicated design with five factors. Table 9 summarizes the description of

the five variables used for this case study. In the same way as that of the

four-factor case, variable x36 is denoted as factor A, variable x55 as factor B,

variable x56 as factor C, variable x64 as factor D and x72 as the E factor.

According to this notation, we present the second order interactions of

variables x36 and x55 as AB, of variables x36 and x56 as AC and so on.
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Table 9: Description of variables for a 2
4

experiment.

Variable Description

x36 x36: major doctor (0 = no, 1 = yes)
x55 immobility of limbs (0 = no, 1 = yes)
x56 fluids (0 = no, 1 = yes)
x64 Radiograph E.R. (0 = no, 1 = yes)
x72 surgical intervention (0 = no, 1 = yes)

In this way we acquired the third, fourth and fifth order interactions of the factors

presented in Tables 10 and 11. Observing Tables 10 and 11 there are some

interesting results that should be highlighted. First and foremost, SU seems

to identify only the most significant variables and do not add additional and

possibly unnecessary information in the final model. This fact leads to low levels

of Type I error rates something that proved in the previous section through the

simulation study. The aforementioned fact is also confirmed through the results of

the other applied algorithms. We should state that all the other methods identify

an additional significant factor which is different for each method; for instance,

CMIM remarks ACDE as a significant one, and mRMR factor A. It should be

noted that applying mRMR algorithm requires the number of significant factors

as an input. As a consequence we present both: the first nine (9 sig.) and

the first ten significant (10 sig.) factors, respectively. When nine factors were

requested, the results were exactly the same as SU. This fact confirms that the

effects identified by SU algorithm are the most significant ones.

Table 10: Significant variables for real medical dataset using a 2
5

experiment.

Method A B AB C AC BC ABC D AD BD ABD CD ACD BCD ABCD E

SU ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

CMIM ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

mRMR (9 sig.) ◦ • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

mRMR(10 sig.) • • • ◦ ◦ • • • ◦ ◦ ◦ ◦ ◦ ◦ • ◦

Table 11: Significant variables for real medical dataset using a 2
5

experiment

(continue).

Method AE BE ABE CE ACE BCE ABCE DE ADE BDE ABDE CDE ACDE BCDE ABCDE

SU ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

CMIM ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ • ◦ •

mRMR (9 sig.) ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •

mRMR (10 sig.) ◦ ◦ • ◦ ◦ • ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ •
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4. CONCLUDING REMARKS

Unreplicated experiments can be conducted in various improvement pro-

cesses due to their economic run size and structure. However, the analysis of

unreplicated designs doesn’t constitute an easy issue since there are no degrees

of freedom to estimate the experimental error. This fact makes the analysis of

variance of such designs infeasible. An additional hindrance is that of dealing

with a non-normal response, for instance a binary one. In this work, we propose

a method for selecting the active effects in unreplicated designs, assuming a logis-

tic regression model. We take advantage of the simpleness and the effectiveness

of the SU measure so as to introduce a new method for analyzing unreplicated

factorials. The novelty of the proposed method is contained on the usage of infor-

mation gain and symmetrical uncertainty for analyzing unreplicated designs with

a binary response. The simulation study of section 3 shows that the proposed

method tends to declare at the highest rate inactive effects to be active and at

the lowest rate active effects to be inactive. Compared with CMIM and mRMR,

our approach has an almost similar performance concerning Type I error rates;

however, Type II error is notably higher for both CMIM and mRMR leading to an

unstable performance compared to SU. This fact, simultaneously leads to a very

satisfactory power, that is 1-(Type II error rate), of the algorithm, something

that constitutes an extremely characteristic for a screening procedure, such as

the analysis of unreplicated designs. In conclusion, SU achieves a general stable

performance and yields significantly low Type II errors, while it keeps Type I at

a low level as well. It should be highlighted that there are problems, especially in

real life, where one needs to perform an economic experiment with the smallest

possible error. SU method gave the best average results in case of a real medical

analysis not only by identifying the significant factors but also by keeping low

Type I error rates. The empirical performance of the proposed algorithm reveals

that this new approach constitutes a very efficient way of tackling the problem of

unreplicated factorial designs while it opens new research opportunities for the

application of information-theoretic methods in experimental designs where there

are no degrees of freedom to estimate the experimental error.
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1. INTRODUCTION

Record values arise naturally in many practical problems and there are sev-

eral situations pertaining to meteorology, hydrology, sporting and athletic events

where only record-values may be recorded. Outcomes of competitions, e.g. in

athletics, arise in ascending order. In particular, sport events attract many spec-

tators since records and best results appeal to people. Being most popular in

sports, lists of best results and records are of particular interest in many other

areas of real life as well. For an elaborate treatment on records and their applica-

tions see: Arnold et al. [6], Nevzorov [40], Gulati and Padget [27], and Ahsanullah

([1], [3]). The first result for record-values involving independent and identically

observations was reported by Chandler [17]. Dziubdziela and Kopocins̀ki [21]

generalized the concept of record-values of [17] to a more generalized nature and

called them k-th record-values. Since the k-th member of the sequence of the

classical record-values is also known as the k-th record-value, the record-values

defined in [21] is also called generalized record-values. Some properties and appli-

cations for current records are given in Barakat et al. [11]. Stigler [46] introduced

the concept of order statistics process, which may be considered as fractional or-

der statistics for non-integer index. Jones [31] gave an alternative construction of

Stigler’s uniform fractional order statistics. Namely, ordinary order statistics of

a sample from uniform distribution are used to construct random variables (rv’s)

with the same joint distribution as Stigler’s order statistics. Some applications

of fractional order statistics are given in Hutson [30]. Bieniek and Szynal [14]

follows a similar method of fractional order statistics to introduce the fractional

record-values or the record-values process, which can be considered as a family

of k-th record-values with n replaced by a positive number t.

One of the most important problems in statistics, is to predict future events

based on past or current events. A predictor may be either a point or an interval

predictor. Point predictor of future records was studied by Kaminsky and Nel-

son [32], Ahsanullah [2], Nagaraja [37], and Doganakso and Balakrishnan [19].

Prediction intervals of future records were given in Dunsmore [20], Balakrishnan

et al. [7], Berred [13], AL-Hussaini and Ahmad [4], and Raqab and Balakrishnan

[42]. Bayesian and non-Bayesian approaches have been extensively studied by

many authors, e.g. Lawless [36], Kaminsky and Rhodin [34], Geisser [25], Na-

garaja [39], and Kaminsky and Nelson [33]. Recent works of prediction using

pivotal quantities include, Barakat et al. ([8], [9], [10], [12]), El-Adll [22], Aly [5],

and El-Adll and Aly [23].

1.1. Motivation of the study

According to Theorem 6.3.1 page 339 of Galambos [24], the ordinary record-

values are very rare to be observed. For example, one may wait too many years
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before observing the next upper (lower) record of the amount of water added to

a given river. Although the fractional k-th record-values cannot be observed in

practice, prediction of future fractional k-th record-values is prominent in appli-

cations. As an example, the prediction of fractional k-th record-values can be

applied in reliability and survival data analysis since the fractional k-th record-

values may be considered as an estimator of the inverse cumulative hazard func-

tion and therefore the quantiles of the population cdf. On the other hand, the

employment of the k-th fractional record-values provides an interval estimate with

accurate significant level, while the use of the k-th ordinary record-values gives

an interval estimate with approximate significant level (e.g., [14]).

Furthermore, our study is carried in a general framework which include

prediction of the usual record-values, as well as k-th ordinary record-values, as

special cases. Thereby, all the obtained new results not only have theoretical

importance but also have practical importance. Thus the results of this paper,

which are given in the present general framework, are beneficial when it is nec-

essary to predict the quantiles of a distribution for which, the type of the hazard

function may be changed in future.

In the next section, we give a comprehensive survey for the main results of

the record-values process, that will be needed in this paper, most of these results

are due to [14].

In Sections 3 and 4 of this paper, two prediction intervals for future frac-

tional upper (lower) records are constructed based on two general predictive piv-

otal quantities. More details for the exponential distribution including, two point

predictors and their exact mean square errors are considered for the upper record-

value process. In Section 5, two simulation studies are carried out to explain the

efficiency of the proposed results. In one of them, the distribution parameters are

assumed to be unknown. Some applications to real data are given in Section 6.

Two basic algorithms for generation ordinary record-values and fractional upper

record-values, as well as an algorithm to implement these prediction intervals, are

given in an Appendix.

2. PRELIMINARY RESULTS

In this section, some important preliminary and auxiliary results for the

basic distribution theory of ordinary and fractional records are presented. Let

{Xn, n > 1} be a sequence of independent and identically distributed (iid) ran-

dom variables (rv’s) having a continuous cumulative distribution function (cdf)

F (x) and probability density function (pdf) f(x). Furthermore, suppose that

X1:n, X2:n, ..., Xn:n denote the order statistics of the random sample X1, X2, ..., Xn.
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2.1. Ordinary records

An observation Xj is called an upper record-value if its value exceeds that

of all previous observations. Thus, Xj is an upper record-value if Xj > Xi for

every i < j. In other words, the upper record-value Rn of a random sample of

size n can be expressed as Rn = Xn:n = max{X1, X2, ..., Xn}. Dziubdziela and

Kopocins̀ki [21] extended the concept of upper record to the k-th upper record,

for k > 1, which is formulated in the following definition.

Definition 2.1 (cf. Dziubdziela and Kopocins̀ki [21]). The k-th upper

record times, Tk(n), n > 1, of the sequence {Xi, i > 1} is defined for fixed k > 1,

as Tk(1) = 1 and

Tk(n + 1) = min{j > Tk(n) : Xj:j+k−1 > XTk(n):Tk(n)+k−1}, n > 1,

and the k-th upper record-values as R
(k)
n = XTk(n):Tk(n)+k−1, n > 1.

The k-th lower record-values is defined similarly. Clearly, R
(k)
1 = X1:k =

min{X1, ..., Xk}. For k = 1 we have R
(1)
n = Rn = Xn:n. In other words, the k-th

upper record-sequence is the sequence of the k-th largest yet seen. Although

the term “record times”is used in all definitions related to records in statistical

literature, it does not mean the time in its verbal sense. The pdf of the k-th

upper record-value is

(2.1) f
R

(k)

n
(r) =

kn

Γ(n)
[H(r)]n−1

[F̄ (r)]k−1f(r), −∞ < r < ∞,

where H(r) = − log[1 − F (r)] is the cumulative hazard function, h(r) = H ′
(r) =

f(r)/F̄ (r) denotes the hazard (failure rate) function and F̄ = 1 − F . The joint

pdf of R
(k)
m and R

(k)
n , m < n for −∞ < rm < rn < ∞, can be written in the form

f
R

(k)

m ,R
(k)

n
(rm, rn)(2.2)

=
kn

Γ(m)Γ(n − m)
[H(rm)]

m−1
[H(rn) − H(rm)]

n−m−1
[F̄ (rn)]

kh(rm)h(rn).

Furthermore, the joint pdf of the random vector (R
(k)
1 , R

(k)
2 , ..., R

(k)
n ) is given by

(2.3)

f
R

(k)

1
,R

(k)

2
...,R

(k)

n
(r1, r2..., rn) = kn

[F̄ (rn)]
k

n∏

i=1

h(ri), −∞<r1 <r2 <...<rn <∞.

For more details of the previous three relations, see [21], [26], and [38].
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2.2. Upper record-values process

Let

{
W

(k)
n , n > 1

}
denote the k-th upper record-values from the standard

exponential distribution (EXP(1)). The following two facts, which are due to

Ahsanullah [1], characterize the exponential distribution.

Fact 1. For any positive integers m and n, with m < n, the rv’s W
(k)
m and

W
(k)
n − W

(k)
m are independent.

Fact 2. The spacings W
(k)
n − W

(k)
m follow gamma distribution with pa-

rameters n − m and k, respectively.

The following definition, which is due to [14], is necessary to construct the

record-value process and fractional k-th record-values.

Definition 2.2. Let k ∈ N be fixed and W (k)
=
{
W (k)

(t), t > 0
}

be a

stochastic process such that:

(i) W (k)
(0) = 0 almost sure;

(ii) W (k)
(t) has independent increments;

(iii) For every t > s > 0, W (k)
(t) − W (k)

(s) has gamma distribution with

parameters t − s and k, respectively.

Then
{
W (k)

(t), t > 0
}

is called the exponential k-th upper record-values process.

Moreover, the rv’s, W (k)
(t), t > 0, are said to be exponential fractional k-th upper

record-values.

Remark 2.1.

1. By fractional k-th record-values, we mean k-th record-values with frac-

tional indices.

2. We shall assume that the cdf F is continuous with pdf f and quantile

function

F−1
(q) = inf{v : F (v) > q}, 0 6 q < 1.

The k-th record-values process and the fractional k-th record-values based

on F are formulated in the following definition:

Definition 2.3 (Bieniek and Szynal [14]). The stochastic process Y (k)
={

Y (k)
(t), t > 0

}
, where

Y (k)
(t) = F−1

(1 − exp[−W (k)
(t)]), t > 0,

is called the k-th upper record-values process based on F and the rv’s Y (k)
(t),

t > 0, are said to be fractional k-th upper record-values from F .
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As in the ordinary record-values, the pdf fY (k)(t)(y) of the fractional k-th

upper record-value Y (k)
(t) is

(2.4) fY (k)(t)(y) =
kt

Γ(t)
[H(y)]

t−1
[F̄ (y)]

k−1f(y), −∞ < y < ∞, t > 0,

and the joint pdf of Y (k)
(tr) and Y (k)

(ts), ts > tr > 0, can be written for −∞ <

yr < ys < ∞, as

fY (k)(tr),Y (k)(ts)
(yr , ys)(2.5)

=
kts

Γ(tr)Γ(ts − tr)
[H(yr)]

tr−1
[H(ys) − H(yr)]

ts−tr−1
[F̄ (ys)]

kh(yr)h(ys).

Moreover, if 0 = t0 < t1 < ... < tn, then the joint pdf of the random vector Y =

(Y (k)
(t1), Y

(k)
(t2), ..., Y (k)

(tn)) is given by (c.f. [14])

(2.6) fY(yt1
, yt2

, ..., ytn
) = ktn [F̄ (ytn

)]
k

n∏

i=1

(H(yti
) − H(yti−1

))
ti−ti−1−1h(yti

)

Γ(ti − ti−1)
,

for −∞ < yt1
< yt2

< ... < ytn
< ∞.

2.3. Lower record-values process

Let

{
Z

(k)
n , n > 1

}
denote the k-th lower record-values from the standard

negative exponential distribution (NEXP(1)), with cdf G∗
(x) = ex, x 6 0.

Definition 2.4. Let k ∈ N be fixed and Z(k)
= {Z(k)

(t), t > 0} be a

stochastic process such that:

(i) Z(k)
(0) = 0 almost sure;

(ii) Z(k)
(t) has independent increments;

(iii) For any t > s > 0, Z(k)
(t) − Z(k)

(s) has a reverse gamma distribu-

tion with parameters t − s and k (the reverse gamma pdf is f(x) =

ks−t

Γ(t−s) |x|
t−s−1ex/k

, x ≤ 0).

Then {Z(k)
(t), t > 0} is called the negative exponential k-th lower record-values

process. Moreover, the rv’s Z(k)
(t), t > 0, are said to be negative exponential

fractional k-th lower record-values.

Definition 2.5 (Bieniek and Szynal [14]). The stochastic process X(k)
={

X(k)
(t), t > 0

}
, where

X(k)
(t) = F−1

(exp[Z(k)
(t)]), t > 0,

is called the k-th lower record-values process based on the cdf F and the rv’s

X(k)
(t), t > 0, are said to be fractional k-th lower record-values from F .
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The pdf fX(k)(t)(x) of the fractional k-th lower record-values X(k)
(t) is

(2.7) fX(k)(t)(x) =
kt

Γ(t)
[− log F (x)]

t−1
[F (x)]

k−1f(x), −∞ < x < ∞, t > 0,

and the joint pdf of X(k)
(tr) and X(k)

(ts), ts > tr > 0 can be written for −∞ <

xs < xr < ∞, as

fX(k)(tr),X(k)(ts)
(xr , xs)(2.8)

=
kts

Γ(tr)Γ(ts − tr)
[− log F (xr)]

tr−1

[
log

F (xr)

F (xs)

]ts−tr−1

[F (xs)]
k f(xr)

F (xr)

f(xs)

F (xs)
.

3. PREDICTION OF FUTURE UPPER RECORD-VALUES PRO-

CESS

In this section, two predictive pivotal quantities (the pivotal quantity is

a function of the sample X1, X2..., and on the distribution parameters, but its

distribution does not depend on the distribution parameters) are developed to

construct prediction intervals of future fractional upper record-values from a con-

tinuous distribution. The following theorem is formulated for the first pivotal

quantity, which enables us to predict any future fractional k-th upper record-value

Y (k)
(ts) based on one fractional k-th upper record-value Y (k)

(tr) with r < s.

Theorem 3.1. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers

and Y (k)
(tr) be the r-th fractional k-th upper record-values from a continuous

distribution with cdf F and pdf f . Then the pdf and the cdf of the pivotal

quantity P
1

=
(
W (k)

(ts) − W (k)
(tr)
)
/W (k)

(tr), with s > r, respectively, are

(3.1) f
P
1

(p
1
) =

1

B(ts − tr, tr)
pts−tr−1

1
(1 + p

1
)
−ts , p

1
> 0,

and

(3.2) F
P
1

(p
1
) = I p

1

1+p
1

(ts − tr, tr) , p
1

> 0,

where Iz(a, b) =
1

B(a,b)

∫ z
0 ua−1

(1 − u)
b−1du, 0 < z < 1, is the incomplete beta

function, B(a, b) =
∫ 1
0 ua−1

(1 − u)
b−1du and

(3.3) W (k)
(ti) = − log F̄ (Y (k)

(ti)), i = 1, 2, ..., n.

A 100(1 − δ)% predictive confidence interval (PCI) for the future fractional k-th

upper record-value Y (k)
(ts), (L, UP

1
), is

L = Y (k)
(tr) and UP

1
= F−1

(
1 −

(
F̄ (Y (k)

(tr))
)1+p

1
(δ)
)

,
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where p
1
(δ) can be obtained by solving the non linear equation F

P
1

(p
1
(δ)) =

1 − δ. Moreover, when Y (k)
(ti) = W (k)

(ti), i = 1, 2, ..., n (i.e., F is EXP(1)), the

expected interval width of the PCI is
p
1
(δ)tr
k . Furthermore, W̃ (k)

(ts) =
ts
tr

W (k)
(tr)

is an unbiased point predictor based on P1.

Proof: Since the transformation w = − log F̄ (y) is one to one and onto

(monotone increasing function), the pdf of the rv W (k)
(t), fW (k)(t)(w), is given

by

fW (k)(t)(w) = |J |fY (k)(t)(y(w)), where |J | =
dy

dw
=

1

f(y)
e−w.

Therefore, by (2.4) we have fW (k)(t)(w) =
kt

Γ(t)w
t−1e−kw, w > 0, which is the pdf

of fractional k-th upper record-values based on EXP(1). Thus, the joint pdf of

W (k)
(tr) and W (k)

(ts), ts > tr > 0 based on EXP(1) can be written by (2.5) as

(3.4) fW (k)(tr),W (k)(ts)
(wr , ws) =

kts

Γ(tr)Γ(ts − tr)
wtr−1

r (ws − wr)
ts−tr−1e−kws ,

with 0 < wr < ws < ∞. By a standard method of transformation of rvs, the joint

pdf f
P

1
,W

(k)

r
(p

1
, wr) of P

1
and W (k)

(tr) can be written in the form

(3.5) f
P

1
,W

(k)

r
(p

1
, wr) =

kts

Γ(tr)Γ(ts − tr)
wts−1

r pts−tr−1
1

e−k(1+p
1
)wr , p

1
>0, wr>0.

Thus, we have

fP
1
(p

1
) =

∫
∞

0
f

P
1
,W

(k)

r
(p

1
, wr)dwr

=
kts

Γ(tr)Γ(ts − tr)

∫
∞

0
wts−1

r pts−tr−1
1

e−k(1+p
1
)wrdwr.

By the definition of gamma function, the above integration can be simplified in

the form (3.1). Moreover, the cdf of the pivotal quantity P
1

is given by

FP
1
(p

1
) =

∫ p
1

0
fP

1
(z)dz =

∫ p
1

0

1

B(tr, ts − tr)
zts−tr−1

(1 + z)
−tsdz

=
1

B(ts − tr, tr)

∫ p
1

0

(
z

1 + z

)ts (
1

z

)tr+1

dz.

If we set w =
z

1 + z
in the above integration, it yields (3.2). If δ is such that

FP
1
(p

1
(δ)) = P (P

1
6 p

1
(δ)) = 1 − δ, we can write

1−δ = P

(
0 <

W (k)
(ts) − W (k)

(tr)

W (k)(tr)
6 pδ

)
= P

(
0 <

W (k)
(ts)

W (k)(tr)
− 1 6 p

1
(δ)

)

= P
(
W (k)

(tr) < W (k)
(ts) 6 (1+p

1
(δ))W (k)

(tr)
)

= P
(
L < Y (k)

(ts) 6 UP
1

)
.
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The expected interval width of the PCI for W (k)
(ts) is given by

E
[
(1 + p

1
(δ))W (k)

(tr) − W (k)
(tr)
]

= E
[
p

1
(δ)W (k)

(tr)
]

=
p

1
(δ)tr
k

.

Finally, a point predictor based on P1 can be obtained from the relation W̃ (k)
(ts) =

L + c1(UP1
−L), where the constant c1 is such that E[W̃ (k)

(ts)] = E[W (k)
(ts)] =

ts/k. Hence the theorem.

Theorem 3.2. Assume that 0 = t0 < t1 < t2 < ... < tn are positive real

numbers. Furthermore, let Y (k)
(t1) and Y (k)

(tr) be the first and the r-th frac-

tional k-th upper record-values from a continuous distribution with cdf F and

pdf f . Then the pdf and the cdf of the pivotal quantity

(3.6) P
2

=
W (k)

(ts) − W (k)
(tr)

W (k)(tr) − W (k)(t1)
, s > r > 1,

are given by

(3.7) fP
2
(p

2
) =

1

B(ts − tr, tr − t1)
(1 + p2)

−(ts−t1)pts−tr−1
2 , p2 > 0,

and

(3.8) FP
2
(p

2
) = I p

2

1+p
2

(ts − tr, tr − t1) , p
2

> 0,

respectively, with W (k)
(ti) = − log F̄ (Y (k)

(ti)), i = 1, 2, ..., n. A 100(1− δ)% PCI

for the future k-th upper record-value Y (k)
(ts) is (L, UP

2
), with

UP
2

= F−1


1 − F̄ (Y (k)

(t1))

(
F̄ (Y (k)

(tr))

F̄ (Y (k)(t1))

)1+p
2
(δ)

 ,

where p
2
(δ) can be obtained by solving the non linear equation FP

2
(p

2
(δ)) = 1−δ.

Moreover, an unbiased point predictor based on P2 is given by

Ŵ (k)
(ts) = W (k)

(tr) +

(
ts − tr
tr − t1

)(
W (k)

(tr) − W (k)
(t1)
)

, s > r > 1,

which is the best linear unbiased predictor (BLUP) for W (k)
(ts).

Proof: We see from the proof of Theorem 3.1 that the rv W (k)
(ti), i=

1,2, ...,n, can be expressed as fractional k-th upper record-values based on EXP(1).

Therefore, the joint pdf of W (k)
(t1), W (k)

(tr) and W (k)
(ts) is given by

f
1,r,s

(w1, wr, ws)

=
kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
wt1−1

1 (wr − w1)
tr−t1−1

(ws − wr)
ts−tr−1e−kws ,
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for 0 < w1 < wr < ws < ∞, where for simplicity we write Wi instead of W (k)
(ti).

On the other hand, by using the linear transformations U = W1, V = Wr − W1

and W = Ws − Wr, the joint pdf of the rv’s U, V and W is

f
U,V,W

(u, v, w)(3.9)

=
kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
ut1−1vtr−t1−1wts−tr−1

exp(−k(u + v + w)),

with u > 0, v > 0, w > 0. The joint pdf of U, V and P
2

= W/V can be written as

f
U,V,P

2

(u, v, p
2
)

=
kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
ut1−1vts−t1−1 pts−tr−1

2
exp (−k [u + (1 + p

2
) v]) ,

for u > 0, v > 0, p
2

> 0. Thus, the pdf of the pivotal quantity P
2

is

fp
2

(p2) =

∫
∞

0

∫
∞

0
f

U,V,P
2

(u, v, p
2
)dudv.

By evaluating the above integration, we get (3.7) and (3.8). Moreover, we have

1 − δ = FP
2
(p

2
) = P (P

2
6 p

2
(δ)) = P

(
0 <

Ws − Wr

Wr − W1
6 p

2
(δ)

)

= P (Wr < Ws 6 Wr + p
2
(δ)(Wr − W1)) = P

(
L < Y (k)

(ts) 6 UP
2

)
.

Furthermore, the expected interval width for the PCI of W (k)
(ts) is given by

E [p
2
(δ)(Wr − W1)] =

p
2
(δ)

k
(tr − t1).

Finally, we can obtain the point predictor, Ŵ (k)
(ts), as in Theorem 3.1. By the

same method of [2] (with a suitable modifications), it is not difficult to verify that

Ŵ (k)
(ts) is the BLIP. Hence the theorem.

4. PREDICTION OF FUTURE LOWER RECORD-VALUES PRO-

CESS

In this section, the predictive pivotal quantities presented in Section 3, will

be modified to construct prediction intervals of future fractional lower record-

values from continuous distributions.

Theorem 4.1. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers

and X(k)
(t1), X

(k)
(t2), ..., X(k)

(tr) be the first r fractional k-th lower record-

values from a continuous distribution whose pdf f and cdf F . Then the pdf and
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the cdf of the pivotal quantity P ∗

1
=
(
Z(k)

(ts) − Z(k)
(tr)
)
/Z(k)

(tr) are given by

(3.1) and (3.2), respectively, where

(4.1) Z(k)
(ti) = log F (X(k)

(ti)), i = 1, 2, ..., n.

A 100(1 − δ)% PCI for the future fractional k-th lower record-value X(k)
(ts) is

(LP ∗

1

, U) where

LP ∗

1

= F−1

((
F (X(k)

(tr)
)1+p∗

1
(δ)
)

, U = X(k)
(tr),

and p∗
1

can be obtained by solving the non linear equation F
P∗

1

(p∗
1
) = 1− δ. More-

over, when X(k)
(ti) = Z(k)

(ti), i = 1, 2, ..., n (i.e., F is NEXP(1)), the expected

interval width of the PCI is
p∗
1
(δ)tr
k .

Proof: Since the transformation Z = log F (y) is one to one and onto

(monotone increasing function), the pdf fZ(k)(t)(z) of the rv Z(k)
(t) is given by

fZ(k)(t)(z) = |J |fX(k)(t)(x(z)), where |J | =
dx
dz =

1
f(x)e

z
. Therefore, by (2.7) we

have fZ(k)(t)(z) =
kt

Γ(t)(−z)
t−1ekz, z < 0, which is the pdf of fractional k-th lower

record-values based on NEXP(1). The remaining part of the proof is similar to the

corresponding part of the proof of Theorem 3.1, with only obvious changes.

Theorem 4.2. Let 0 = t0 < t1 < t2 < ... < tn be positive real numbers

and X(k)
(t1) and X(k)

(tr) be the first and the r-th fractional k-th lower record-

values from a continuous distribution whose pdf f and cdf F . Then the pdf and

the cdf of the pivotal quantity

(4.2) P ∗

2
=

Z(k)
(tr) − Z(k)

(ts)

Z(k)(t1) − Z(k)(tr)
, s > r > 1,

are given by (3.7) and (3.8) respectively, with Z(k)
(ti) = log F (X(k)

(ti)), i =

1, 2, ..., n. A 100(1 − δ)% PCI for the future k-th lower record-value X(k)
(ts)

is (LP ∗

2

, U) where

LP ∗

2

= F−1


F (X(k)

(tr))

(
F (X(k)

(tr))

F (X(k)(t1))

)p∗
2
(δ)

 , U = X(k)

(tr),

and p∗
2
(δ) can be obtained by solving the non linear equation FP ∗

2

(p∗
2
(δ)) = 1− δ.

Proof: The joint pdf of the fractional k-th lower record-values Z(k)
(t1),

Z(k)
(tr) and Z(k)

(ts) based on NEXP(1) is given by

f
1,r,s

(z1, zr, zs)

=
kts

Γ(t1)Γ(tr − t1)Γ(ts − tr)
(−z1)

t1−1
(z1 − zr)

tr−t1−1
(zr − zs)

ts−tr−1ekzs ,
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−∞ < zs < zr < z1 6 0. Now, consider the linear transformations U∗
= −Z1,

V ∗
= Z1 − Zr and W ∗

= Zr − Zs, the joint pdf of the rv’s U∗, V ∗
and W ∗

is

given by relation (3.9). Therefore, the rest of the proof is similar, with only

obvious changes, to the corresponding part of the proof of Theorem 3.2.

Remark 4.1.

1. The preceding results can be proved by the independence between

the components in each of the vectors (W (k)
(tr), W

(k)
(ts)−W (k)

(tr)),

(W (k)
(t1), W

(k)
(tr)−W (k)

(t1), W
(k)

(ts)−W (k)
(tr)), (Z(k)

(tr), Z(k)
(ts)−

Z(k)
(tr)) and (Z(k)

(t1), Z
(k)

(tr)−Z(k)
(t1), Z

(k)
(ts)−Z(k)

(tr)).

2. The lower and the upper limits of the PCI for future fractional k-th

upper (lower) record-values depend on the population cdf F .

3. The ordinary upper (lower) record-values are obtained as special cases

from the presented methods by setting ti = i, for all i = 1, 2, ..., n.

4. All the preceding results remain valid if we replace ti = i, i = 1, 2, ..., r,

that is, fractional k-th upper (lower) record-values can be predicted via

ordinary k-th upper (lower) record-values.

5. SIMULATION STUDIES

In this section, simulation studies are conducted to demonstrate the effi-

ciency of the presented results. For this purpose, three algorithms are established

in Appendix A.

Let us first check the validity of the first two algorithms, by generating ten

fractional upper records Y (1)
(ti), i = 1, 2, ..., 10, (see Table 1) based on Weibull

distribution with shape and scale parameters α = 3 and β = 30, respectively.

It is easy to compute the theoretical expectation of each of these records, namely,

(5.1) E[Y (k)
(ti)] = βk−

1
α

Γ (ti + 1/α)

Γ(ti)
, i = 1, 2, ..., 10.

The idea of this simple test is to compare the theoretical value E[Y (k)
(ti)] with

the estimated value resulted from application of the algorithms, i.e., the average

value Ȳ (k)
(ti). In order to compute the average value of each of these records,

we repeat the generation processes of these ten records, different values of times,

M = 10
3, 10

4, 10
5, 10

6
, and for each of these replicates M , we compute the

average Ȳ (k)
(ti), for each i. Table 1 summarizes these computations and shows

that the theoretical expectations for all records are close to the estimated values,

which are resulted via the application of the two algorithms.
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All Computations are performed by using Mathematica version 10 with processor:

Intel(R) Core(TM) i7-2640 cpu @ 2.80GHz 2.80GHz, RAM 4.00GB, and system

type 64-bit operating system.

Table 1: A comparison between Ȳ (1)
(ti) and E[Y (1)

(ti)].

i 1 2 3 4 5 6 7 8 9 10 Run

ti 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 Time(s)

Ȳ (1)(ti),
M =103 26.7135 31.7547 35.6315 38.8247 41.5164 43.8532 46.0244 48.2064 50.0735 51.8080 0.515

Ȳ (1)(ti),
M =104 26.8238 31.8600 35.7033 38.8794 41.6359 44.0795 46.3186 48.3856 50.2302 51.9270 2.840

Ȳ (1)(ti),
M =105 26.7416 31.8409 35.7152 38.9153 41.6562 44.1004 46.2950 48.3030 50.1555 51.8929 25.896

Ȳ (1)(ti),
M =106 26.7875 31.8445 35.7116 38.9043 41.6630 44.0974 46.2920 48.2962 50.1461 51.8737 267.182

E[Y (1)(ti)] 26.7894 31.8425 35.7192 38.9186 41.6724 44.1078 46.3026 48.3085 50.1612 51.8869 0.265

5.1. Exact and numerical computations

The exact expected values of the upper limits for the future fractional k-th

upper record-value, Y (k)
(ts), from the exponential distribution with mean 1/λ,

based on the pivotal quantities P
1

and P
2
, respectively, are given by

E[UP
1
] =

(1 + p1(δ))tr
λk

and E[UP
2
] =

1

λk
[tr + p

2
(δ)(tr − t1)] .

Moreover, the exact mean square errors of U
P1

and U
P2

, respectively, are given

by

MSEU
P1

= E
[
U

P1
− Y (k)

(ts+1)

]2

=
1

(λk)2

[
(1+p

1
(δ))2tr(1+ tr) + ts+1(1+ ts+1) − 2tr(1+ ts+1)(1+p

1
(δ))

]

and

MSEU
P2

= E
[
U

P2
− Y (k)

(ts+1)

]2

=
1

(λk)2
{p

2
(δ)(tr− t1) [p

2
(δ)(tr− t1+1) − 2(ts+1− tr)] + (ts+1− tr)(ts+1− tr+1)} .

The mean square predictive errors, based on P1 and P2 respectively, are

MSEP1
= E

[
Ỹ (k)

(ts) − Y (k)
(ts)
]2

=
ts(ts − tr)

(λk)2tr
, r > 1,

and

MSEP2
= E

[
Ŷ (k)

(ts) − Y (k)
(ts)
]2

=
(ts − tr)(ts − t1)

(λk)2(tr − t1)
, s > r > 1,
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where Ỹ (k)
(ts) and Ŷ (k)

(ts) denote the point predictors of Y (k)
(ts) based on the

pivotal quantities P1 and P2, respectively.

Remark 5.1. Clearly,

MSEP2
− MSEP1

=
t1(ts − tr)

2

(λk)2tr(tr − t1)
> 0.

That is, MSEP2
> MSEP1

, for all s > r > 1.

The estimated root mean square errors for the upper limits of the PCI,

respectively are defined by

ˆRMSE
Pj

=

[
1

M − 1

M∑

i=1

(
UPj

(i) − Y (k)
(ti+1)

)2
]1/2

, j = 1, 2.

Throughout this paper the following abbreviations are used:

Ȳ (k)
(ts) : The mean of fractional k-th record-value, Y (k)

(ts), is defined

by Ȳ (k)
(ts) =

1
M

∑M
i=1 Y

(k)
i (ts), where M denote the number of

replicants.

PCI : The predictive confidence interval of future fractional upper

record.

CP
i
% : The percent of coverage probability based on Pi, i = 1, 2, at δ =

0.10.

(L̄, ŪPi
) : The average lower (upper) limits for the PCI of future fractional

upper record.

(L̄P ∗

i
, U) : The average lower (upper) limits for the PCI of future fractional

lower record.

BLUP : Best linear unbiased predictor for future fractional upper record.

E[U
Pi

] : The expected value of the upper limit of the PCI based on

Pi, i = 1, 2.

RMSE
Pi

: The exact root mean square error for the upper limit of the

PCI based on Pi, i = 1, 2.

ˆRMSE
Pi

: The estimated root mean square error for the upper limit of

the PCI based on Pi, i = 1, 2.

The rest of this section contains illustrations of the purposed methods

through two simulation studies. The first study for EXP(0.1) is based on M = 10
5

replicates of n = 25 k-th upper records (including 13 ordinary records and 12 frac-

tional records) corresponding to ti = 1, 1.5, 2, 2.5, ..., 13, k = 2. In this study the
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first r = 15 upper records Y (2)
(1), Y (2)

(1.5), ..., Y (2)
(8) are assumed to be known

and the next future 9 upper records, Y (2)
(8.5), Y (2)

(9), ..., Y (2)
(12.5) are to be

predicted. The results which are shown in Table 2, include 90% coverage prob-

ability, two point predictors as well as two prediction intervals and the expected

values of the upper limits. Moreover the exact root mean square errors for the

point predictors, exact and estimated root mean square errors for the upper limits

are given between parentheses. It is worth to mention here that the PCI’s as well

as the point predictors does not depend on the scale parameter β.

Table 2: Prediction of future ordinary and fractional upper records

from EXP(0.1) based on M = 10
5

replicates.

tr ts CP
1
% CP

2
% L̄ Ȳ (2)(ts) Ỹ (2)(ts) Ŷ (2)(ts) ŪP1

E[UP1
] ŪP2

E[UP2
]

8.0

8.5 89.914 89.958 40.026 42.525
42.527 42.531 47.651 47.620 47.798 47.756
(3.644) (3.660) (6.283) (6.255) (6.449) (6.418)

9.0 89.998 89.993 40.026 45.031
45.029 45.037 53.375 53.341 53.688 53.632
(5.303) (5.345) (9.698) (9.688) (10.108) (10.082)

9.5 90.064 90.092 40.026 47.527
47.531 47.542 58.501 58.464 58.983 58.917
(6.673) (6.748) (12.820) (12.816) (13.467) (13.440)

10.0 90.014 90.032 40.026 50.037
50.032 50.047 63.368 63.327 64.025 63.947
(7.906) (8.018) (15.751) (15.740) (16.638) (16.597)

10.5 89.989 90.022 40.026 52.531
52.534 52.553 68.091 68.047 68.925 68.837
(9.057) (9.210) (18.544) (18.535) (19.676) (19.628)

11.0 89.967 90.024 40.026 55.040
55.035 55.058 72.722 72.675 73.737 73.638

(10.155) (10.351) (21.246) (21.242) (22.626) (22.574)

11.5 90.036 90.097 40.026 57.541
57.537 57.564 77.290 77.240 78.489 78.380

(11.215) (11.456) (23.887) (23.887) (25.518) (25.461)

12.0 89.998 90.132 40.026 60.055
60.039 60.069 81.812 81.760 83.197 83.078

(12.247) (12.536) (26.499) (26.484) (28.380) (28.303)

12.5 89.983 90.063 40.026 62.550
62.540 62.575 86.301 86.245 87.873 87.744

(13.258) (13.595) (29.053) (29.046) (31.193) (31.112)

9.5

10.0 89.993 90.020 47.527 50.037
50.028 50.031 55.006 54.975 55.106 55.066
(3.627) (3.638) (6.100) (6.083) (6.211) (6.190)

10.5 90.003 90.144 47.527 52.531
52.529 52.536 60.562 60.528 60.774 60.723
(5.257) (5.286) (9.275) (9.270) (9.547) (9.530)

11.0 90.041 90.123 47.527 55.040
55.031 55.040 65.514 65.478 65.840 65.781
(6.589) (6.642) (12.145) (12.152) (12.579) (12.565)

11.5 90.034 90.145 47.527 57.541
57.532 57.545 70.202 70.163 70.646 70.577
(7.780) (7.859) (14.814) (14.827) (15.410) (15.396)

12.0 90.069 90.078 47.527 60.055
60.034 60.049 74.741 74.699 75.305 75.228
(8.885) (8.993) (17.366) (17.370) (18.124) (18.096)

12.5 89.965 90.104 47.527 62.550
62.535 62.554 79.185 79.140 79.871 79.786
(9.934) (10.073) (19.810) (19.820) (20.739) (20.706)

11.0

11.5 89.975 89.967 55.040 57.541
57.542 57.545 62.417 62.371 62.490 62.437
(3.615) (3.623) (5.981) (5.964) (6.062) (6.039)

12.0 89.942 90.001 55.040 60.055
60.044 60.049 67.856 67.807 68.010 67.946
(5.222) (5.244) (8.990) (8.976) (9.187) (9.161)

12.5 90.016 90.042 55.040 62.550
62.546 62.554 72.687 72.634 72.923 72.851
(6.528) (6.567) (11.707) (11.685) (12.022) (11.979)
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In the second simulation study we assume that the first five ordinary k-th

upper record-values, Y (3)
(1), ..., Y (3)

(5), have been observed from Weibull distri-

bution with cdf,

F (y) = 1 − exp

[
−

(
y

β

)α]
, y > 0, α > 0, β > 0,

for α = 2.5, β = 40 and we have to predict the next three ordinary k-th upper

record-values and three fractional k-th upper record-values:

Y (3)
(5.5), Y (3)

(6), Y (3)
(6.5), Y (3)

(7), Y (3)
(7.5), Y (3)

(8).

The prediction results are obtained in the following two situations:

(a) The parameters are assumed to be known.

(b) The parameters are unknown and should be estimated.

The maximum likelihood estimators (MLE’s) of the parameters based on the first

observed r < n ordinary k-th upper record-values can be obtained by maximizing

(2.6) (after replacing n with r). Namely,

(5.2) α̂ =
r∑r−1

i=1 ln(Y (k)(r)/Y (k)(i))
and β̂ =

(
k

r

) 1

α̂

Y (k)
(r).

But the MLE’s are biased and Wang and Ye [47] obtained the corrected unbiased

estimators, which are

(5.3) α̃ =
r − 2∑r−1

i=1 ln(Y (k)(r)/Y (k)(i))
and β̃ =

Γ(r)

Γ(r + 1/α̃)

(
1 +

ln r

rα̃

)r−1

β̂.

Moreover, an unbiased point predictor, Ỹ (k)
(ts) based on P1 is obtained, and is

given by

(5.4) Ỹ (k)
(ts) =

Γ(tr)Γ(ts + 1/α)

Γ(ts)Γ(tr + 1/α)
Y (k)

(tr).

For each value of tr and ts in Table 3, the prediction results obtained based on

the exact values of parameters are given in the first two lines, while when the

parameters are estimated from (5.3), the prediction results are shown in the last

two lines of the same value of tr and ts.
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Table 3: Prediction of future ordinary and fractional k-th upper record-values

with k = 3 from Weibull(2.5, 40) based on M = 10
5

replicates. The root

mean square errors are between parentheses.

tr = r ts CP
1
% CP

2
% L Ȳ (3)(ts) Ỹ (3)(ts) UP1

UP2
E[UP1

]

5.0

5.5

89.969 89.894 47.9290 49.9014
49.9012 53.6961 53.9554

53.6622
(2.7719) (4.4844) (4.7718)

85.578 87.335 47.9290 49.9014
49.8351 53.6967 54.2708
(2.9267) (5.4088) (5.9271)

6.0

90.045 89.978 47.9290 51.7529
51.7633 57.6233 58.1218

57.5869
(3.8825) (6.5626) (7.1876)

83.096 85.544 47.9290 51.7529
51.6495 57.6239 58.7394
(4.3132) (8.5196) (9.6642)

6.5

90.026 89.940 47.9290 53.5099
53.5303 60.8786 61.5855

60.8402
(4.7093) (8.2831) (9.1853)

81.141 84.075 47.9290 53.5099
53.3848 60.8792 62.5114
(5.4889) (11.2884) (12.9732)

7.0

89.959 89.991 47.9290 55.2068
55.2142 63.7723 64.6657

63.7320
(5.4164) (9.7591) (10.9042)

79.384 82.639 47.9290 55.2068
55.0509 63.7729 65.9118
(6.5917) (13.8610) (16.0448)

7.5

89.954 89.986 47.9290 56.8109
56.8245 66.4209 67.4835

66.3789
(6.0246) (11.0487) (12.4157)

78.043 81.511 47.9290 56.8109
56.6559 66.4216 69.0622
(7.6409) (16.2993) (18.9581)

8.0

90.013 90.081 47.9290 58.3474
58.3693 68.8847 70.1027

68.8412
(6.5493) (12.1988) (13.7668)

76.884 80.553 47.9290 58.3474
58.2064 68.8854 72.0256
(8.6456) (18.6427) (21.7588)

6.0

6.5

90.137 90.106 51.7529 53.5099
53.5196 56.8502 57.0023

56.8256
(2.4750) (3.9648) (4.1292)

86.360 87.745 51.7529 53.5099
53.4529 56.8507 57.1463
(2.5871) (4.5650) (4.8598)

7.0

90.007 89.930 51.7529 55.2068
55.2031 60.3395 60.6362

60.3135
(3.4957) (5.7578) (6.1244)

84.132 86.076 51.7529 55.2068
55.0810 60.3401 60.9186
(3.8025) (7.0049) (7.6738)

7.5

90.001 89.976 51.7529 56.8109
56.8131 63.2519 63.6779

63.2247
(4.2573) (7.2441) (7.7866)

82.368 84.637 51.7529 56.8109
56.6457 63.2526 64.1030
(4.8119) (9.1503) (10.1386)

8.0

90.016 89.958 51.7529 58.3474
58.3576 65.8570 66.4008

65.8286
(4.8783) (8.5096) (9.2079)

80.930 83.479 51.7529 58.3474
58.1539 65.8577 66.9755
(5.7231) (11.1011) (12.3802)

7.0

7.5

90.086 90.102 55.2068 56.8109
56.8169 59.8084 59.9066

59.7786
(2.2653) (3.5675) (3.6735)

86.856 87.946 55.2068 56.8109
56.7554 59.8090 59.9720
(2.3490) (3.9979) (4.1891)

8.0

90.164 90.231 55.2068 58.3474
58.3615 62.9703 63.1637

62.9389
(3.1695) (5.1441) (5.3853)

84.952 86.511 55.2068 58.3474
58.2460 62.9709 63.2955
(3.4058) (6.0285) (6.4710)
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6. DATA ANALYSIS

In the inverse sampling plan, one takes observations until a fixed number

r of records is reached (cf. [28]). According to Hofmann and Nagaraja [28], the

amount of Fisher information (FI) for both fixed sample and inverse sampling plan

based on all upper records and their record times is greater than the amount of

FI based on only upper records. Therefore, in this section, we shall estimate the

parameters from the likelihood function for record-breaking (record-values and

their inter-record times).

For the inverse sampling plan, the joint likelihood of the upper record-values

Y1, Y2, ..., Ym and the inter-record times τ1, τ2, ..., τm is given by

(6.1) L(y, τ ; Θ) = f(y1, ..., ym, τ1, ..., τm; Θ) =

m∏

i=1

f(yi; Θ)(F (yi; Θ))
τi−1,

where y is the vector of observed upper records, τi, i = 1, 2, ..., m − 1, are the

number of trials following the observation yi that are needed to obtain the next

upper record-value yi+1 with τm = 1 and Θ is an unknown vector of parameters

(e.g. [40], [28] and [35]). Similar result for lower record-breaking is given in [45],

[29] and [27], that is

(6.2) L∗
(x, τ∗

; Θ) = f(x1, ..., xm, τ∗

1 , ..., τ∗

m; Θ) =

m∏

i=1

f(xi; Θ)(1 − F (xi; Θ))
τ∗

i −1,

where x is the vector of observed lower records, τ∗

i , i = 1, 2, ..., m− 1, is the num-

ber of trials needed, following xi to obtain the next lower record xi+1, τ∗

m = 1

and F (.) is cdf of the population from which the sample is drawn. In the rest of

this section, three examples to real data are analyzed.

Example 6.1 (Maximum annual temperature). The following data from

Long Beach, California, represents the maximum annual temperature in Fahren-

heit from 1990 to 2012:

86.7, 81.7, 84.3, 86.4, 84.9, 85.1, 89.7, 82.3, 84.2, 85.8, 81.5, 82.4,

84.3, 84.1, 90.5, 89.4, 87.5, 88.4, 90.3, 84.1, 88.4, 83.0, 86.6.

The upper records and inter-record times for the above data are y1 = 86.7, y2 =

89.7, y3 = 90.5 and τ1 = 6, τ2 = 8, τ3 = 1. First we fit the complete data to some

probability distributions. The preliminary fitting indicates that Weibull, extreme

value, Frechet distributions are appropriate models for this data. Moreover, the

maximum likelihood estimates (MLE’s) of parameters are obtained based on (6.1)

and then a comparison is performed according to Akaike information criterion

(AIC) to select the best model. The results are summarized in Table 4.
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Table 4: Comparison between three different distributions

via the log Likelihood and AIC.

Model Parameters L = Log L AIC

Frechet(α, β) α̂ = 52.7598, β̂ = 85.2217 −11.347 26.694

EV D(α, β) α̂ = 85.1787, β̂ = 1.67541 −11.331 26.662

Weibull(α, β) α̂ = 26.6179, β̂ = 86.4405 −11.052 26.103

According to AIC Weibull distribution is better than extreme value distri-

bution (EV D) and Frechet distributions. Based on the first three records the

upper limits for the next two records and the next two half fractional records are

obtained in Table 5.

Table 5: Point predictor and 95% PCI for the next two half record-values

and the two record-values for annual maximum temperatures

based on the first 3 records.

tr ts L Ỹ (1)(ts) UP1
E[UP1

] UP2
E[UP2

]

3

3.5 90.500 91.111 92.884 91.873 93.395 91.946
4 90.500 91.633 93.960 92.936 94.720 93.533

4.5 90.500 92.089 94.735 93.704 95.652 94.594
5 90.500 92.494 95.358 94.320 96.385 95.406

Example 6.2 (Maximum annual earthquakes). The data consists of 151

magnitude of the annual maximum earthquakes in the United States during the

period from 1769 to 1989 (some data are missing). The data are from Mathe-

matica Documentation Center. The upper records and inter-record times for the

annual maximum earthquakes are:

xi = 6.0, 6.5, 7.2, 7.4, 7.6, 7.9, 8.0, 8.3, 8.4

τi = 3, 3, 1, 15, 10, 28, 39, 26, 1

We proceed as in Example 6.1. According to AIC, and the Log likelihood function,

Gumbel distribution is more suitable than several other distributions (including

Weibull, EVD, Frechet distributions) for modeling the previous data. The cdf of

Gumbel distribution is of the form

F (y) = 1 − exp

[
−e(y−α)/β

]
, −∞ < y < ∞, −∞ < α < ∞, β > 0.
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The data are analyzed in the following two cases:

1. In the first case, we suppose that the first 8 record-values have been ob-

served. The prediction results in the first 3 rows of Table 6 are obtained

via the MLE’s α̂ = 6.59296 and β̂ = 1.00387, which are computed from

(6.1).

2. In the second case, all the first 9 record-values are assumed to be ob-

served. An application to (6.1) again yields, α̂ = 6.58459 and β̂ =

1.07983, which are very close to the MLE’s computed from the complete

data. The prediction results according to these estimates are shown in

the last two rows of Table 6.

In such cases a point predictor based on P1 is given by

Ỹ (1)
(ts) = Y (1)

(tr) + E
[
Y (1)

(ts)
]
− E

[
Y (1)

(tr)
]
, ts > tr,

where E
[
Y (1)

(ts)
]

and E
[
Y (1)

(tr)
]

are computed numerically.

Table 6: Point predictor and 95% upper limits for the next half record-value

and the next record-value for the annual maximum earthquakes.

tr ts L Ỹ (1)(ts) UP1
UP2

8
9 8.300 8.425 8.676 8.694

9.5 8.300 8.537 8.776 8.799
10 8.300 8.637 8.863 8.890

9
9.5 8.400 8.520 8.637 8.641
10 8.400 8.628 8.759 8.767

Example 6.3 (One hour mean concentration of sulphur dioxide). The fol-

lowing data represents the monthly maxima of 1 h mean concentration of sulphur

dioxide in parts per hundred million (pphm) from Long Beach, California, during

1956 to 1974 for the month of October:

26, 14, 27, 15, 16, 16, 11, 10, 14, 12,

15, 40, 29, 13, 20, 41, 31, 28, 11.

Roberts[44] shows that the Weibull model is a reasonably good for fitting this

data. An application of extreme value Q−Q plot by [16] supports Weibull model.

The upper records and inter-record times for the above data are: x1 = 26, x2 =

27, x3 = 40, x4 = 41, and τ1 = 2, τ2 = 9, τ3 = 4, τ4 = 1. The MLE’s of Weibull

parameters based on the likelihood function (6.1) are α̂ = 2.3596 and β̂ = 24.5108.
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Based on the pivotal quantities P
1

and P
2
, 90% PCI’s for the next two records,

respectively, are (41, 52.328), (41, 52.103) and (41, 59.452), (41, 59.382), which

are shorter than the intervals obtained by [47] ((41.1590, 60.2449) and (41.9011,

75.5765)). Moreover, an unbiased point predictors for the next two record-values

are obtained from (5.4), that is, Ỹ (1)
(5) = 45.344 and Ỹ (1)

(6) = 49.187.

7. CONCLUSION

In this article, we have proposed two predictive pivotal quantities for con-

structing prediction intervals of future ordinary (fractional) upper (lower) records

from any continuous distribution. More details have been given for the expo-

nential distribution. Prediction intervals constructed using this approach have

been demonstrated, by using a simulation study and by applying it to real data.

Example 6.3 shows that this method gives a shorter intervals than that given by

Wang and Ye [47]. Moreover, the second case in the simulation study as well as

the three real data examples show that, when the cdf of the data is unknown

as always in practice, the given method is applicable with acceptable degree of

accuracy. Also, it is noted that the coverage probability is closed to theoretical

value 1− δ = 0.90 and average upper (lower) limits of PCI are closed to expected

values of upper (lower) limits based on both P1 and P2. Comparisons based on

exact and estimated root mean square errors, indicate that the pivotal quantity

P1 is relatively better than P2. Moreover, the root mean square errors, increase

with increasing of the difference ts − tr. Finally, three real data sets have been

completely analyzed.

A. ALGORITHMS

Based on the results of Rider [43], Rahman [41], Cramer [18] and Burkschat

et al. [15], we can generate ordinary k-th upper (lower) record-values from any

continuous cdf F with pdf f , by the following algorithm.

A.1. Algorithm 1

Step 1. Choose the values of n, k and determine the cdf F ;

Step 2. Generate a random sample of size n from beta distribution,

Beta(k, 1), say B1,B2, ...,Bn;
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Step 3. Compute the k-th upper record-value Y
(k)
r , based on F by the

formula

Y (k)
r = F−1


1 −

r∏

j=1

Bj


 , r = 1, 2, ..., n;

Step 4. Compute the k-th lower record-value X
(k)
r , based on F from the

relation

X(k)
r = F−1




r∏

j=1

Bj


 , r = 1, 2, ..., n.

The second algorithm relays on Theorem 1 and Definition 2 of Bieniek and

Szynal [14]. The algorithm is formulated in a special case, whenever there is only

a single fractional k-th upper record-value between two successive ordinary k-th

upper record-values.

A.2. Algorithm 2

Step 1. Determine n, k and use Algorithm 1 to generate n ordinary k-th

upper record-values, W
(k)
i , i = 1, 2, ..., n, based on EXP(1);

Step 2. Choose the real numbers 0 = t0 < t1 < ... < tn, such that, i− 1 <

ti < i, ∀ i = 1, ..., n;

Step 3. Compute the fractional k-th upper record-values based on EXP(1)

by Theorem 1 of Bieniek and Szynal (2004), that is,

(A.1) W (k)
(ti) = (1 − B∗

i )W
(k)
[ti]

+ B∗

i W
(k)
[ti+1], i = 1, 2, ..., n,

where [ti] denotes the greatest integer part of ti, B∗

i is a random

observation from beta distribution Beta(t∗i , 1 − t∗i ), independent

of W
(k)
[ti]

, i = 1, 2, ..., n, and t∗i denotes the fractional part of the

numerical value of ti;

Step 4. The fractional k-th upper record-values based on F , are then

given by

(A.2) Y (k)
(ti) = F−1

(
1 − e−W (k)(ti)

)
, i = 1, 2, ...., n.

The general case can be accomplished by Theorems 2 and 3 of [14].
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A.3. Algorithm 3

Step 1. Determine the number n of fractional upper records to be gen-

erated, the number of repetitions M , the real numbers 0 = t0 <

t1 < ... < tn with i − 1 < ti < i, ∀ i = 1, ..., n and the distribu-

tion with its parameter(s);

Step 2. Generate and store M arrays, each array include n of fractional

k-th upper record-values;

Step 3. Determine the number of observed ordinary (fractional) k-th

upper record-values r and the number of future ordinary (frac-

tional) k-th upper record-value s, to be predicted;

Step 4. Find the numerical values of pi(δ) by solving the nonlinear equa-

tions F
Pi

(pi) = 1 − δ, i = 1, 2;

Step 5. Find the MLE’s of the parameters based on the first r ordinary

(fractional) k-th upper record-values;

Step 6. Compute the upper and lower limits for the PCI based on the

pivotal quantities P1 and P2 by Theorems 3.1 and 3.2, and the

point predictor(s) with

(i) the true values of parameters, and

(ii) the MLE’s of parameters;

Step 7. Check whether, the observed value of Y (k)
(ts) did belong to the

PCI;

Step 8. Repeat Steps 5, 6 and 7, M times;

Step 9. Compute the percentage of coverage probability, that is the per-

cent that the true value of the future fractional record lies inside

the PCI, the average of the lower and upper limits;

Step 10. Compute the root mean square errors and expected values of

upper limits based on P1 and P2.
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